Изучение спектра молекулярного йода

Контрольная работа - Химия

Другие контрольные работы по предмету Химия

 

 

 

 

 

 

 

 

 

 

 

 

 

Контрольная работа

на тему: Изучение спектра молекулярного йода

Введение

 

Молекулярные спектры сильно отличаются от атомных. Атомные спектры состоят из сравнительно редко расставленных линий, которые сбегаются к концам серий. Число наблюдаемых серий в атомах с малым числом внешних электронов невелико. В молекулярных же спектрах весьма большое число отдельных линий образует характерные скопления, в каждом из которых линии у одного края располагаются настолько тесно, что при наблюдении в прибор недостаточной разрешающей способности они сливаются. Поэтому все скопления приобретают вид полосы - резкой с одного края и размытой с другого. По этой причине спектры молекул называются полосатыми спектрами. Резкая граница полосы носит название канта. Полосы расположены вблизкой инфракрасной (длины волн порядка нескольких микрометров), видимой и ультрафиолетовой областях спектра. В далекой инфракрасной области (длины волн порядка нескольких сотен микрометров) двухатомные молекулы дают линейчатые спектры.

Теоретическая часть

 

Электронные термы двухатомной молекулы AB являются функциями одного параметра - расстояния между ядрами R, что позволяет наглядно отобразить их на графике в виде функции En(R) (рис. 1). Качественный вид каждого терма En(R) прост. При R >?энергия электронов стремится к сумме электронных энергий ЕА + ЕВ отдельных атомов (или ионов) в тех состояниях, которые формируются при диссоциации молекулы (говорят, что терм коррелирует с соответствующей парой атомных состояний). Для разных термов молекул эти предельные значения могут быть различны, но могут и совпадать. При R >0 энергия электронов стремится к конечной величине, равной энергии электронов в атоме, ядро которого имеет заряд ZA + ZB (так называемом объединенном атоме). Полная же энергия терма En(R) неограниченно возрастает в силу кулоновского отталкивания ядер, в пределе малых R пропорционального 1/R. При промежуточных значениях R функция En(R) может изменяться монотонно, либо при некотором межъядерном расстоянии Re появляется минимум. Расстояние Re называется равновесным.

 

Рис. 1 - Вид электронных термов двухатомной молекулы: a- основной терм; b- связанное возбужденное состояние; c- нестабильное возбужденное состояние

При заданном электронном состоянии движение ядер есть движение точечных частиц, взаимодействующих между собой с потенциалом En(R). Положение двух ядер задается шестью координатами, определяющими движение молекулы как целого, вращение молекулы и радиальное движение ядер (колебания). Поступательное движение соответствует свободному движению центра масс молекулы и не представляет интереса.

Таким образом, в заданном электронном терме En(R) для каждого конкретного значения J возникает свой потенциал U(R), в котором надо рассматривать радиальное движение ядер. Однако второе слагаемое в U(R), обусловленное вращательным движением ядер, при не слишком больших значениях вращательного квантового числа мало. Поэтому в нем можно приближенно заменить R на Re- равновесное значение межъядерного расстояния.

Называют вращательной постоянной. Вводя момент инерции молекулы относительно оси, проходящей через центр масс молекулы, получаем, что Вращательная постоянная определяет характерную величину энергии вращения ядер в молекуле, хотя расстояние между соседними вращательными уровнями энергии, то есть линейно увеличивается с J (рис. 2).

 

Рис. 2 - Вращательные уровни энергии для двух колебательных состояний двухатомной молекулы

Удобной аппроксимацией реальных электронных термов двухатомной молекулы является потенциал Морзе:

 

UMorse(R) = D{1-exp[-a(R- Re)]}2.

 

Переходы между электронно-колебательно-вращательными уровнями. Правила отбора.

В квантовой механике поглощение электромагнитного излучения молекулой рассматривается как переход между различными состояниями (уровнями) молекулы, обусловленный взаимодействием с внешним электромагнитным полем. В электрическом дипольном приближении вероятность такого перехода пропорциональна квадрату матричного элемента оператора дипольного момента, связывающего начальное и конечное состояние системы. Совокупность правил, определяющих случаи, когда данный матричный элемент не равен нулю (дипольный переход не запрещен, или разрешен), называется правилами отбора. Вывод правил отбора для переходов различного типа сводится к вычислению (или оценке на основе симметрии) соответствующих матричных элементов.

Сформулируем правила отбора для электрических дипольных переходов в двухатомных молекулах. Они различаются в зависимости от вида перехода. Сначала рассмотрим переходы в пределах одного электронного терма. Если при этом переходе не меняется колебательное квантовое число молекулы, то говорят о вращательном переходе (n,, J") - (n,, J) (в спектроскопии принято обозначать одним и двумя штрихами состояния с большей и с меньшей энергией, соответственно). Для вращательного перехода вероятность не равна нулю только если J = J - J" = 1, а дипольный момент молекулы в точке равновесия ядер d(Rв) ? 0. Последнее условие запрещает вращательные переходы в гомоядерных молекулах. Если при переходе меняется и колебательное квантовое число молекулы, то говорят о колебательно-вращательном переходе (n,", J") - (n, , J). В этом случае к условиюJ = 1 д?/p>