Измерение низкоэнергетических y–квантов. Спектрометрия КХ–y–излучения

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

полупроводнике возникают быстрые электроны, которые выбивают другие электроны в каскадном процессе ударной ионизации из различных энергетических зон, в том числе и самых глубоких. Этот процесс продолжается до тех пор, пока энергия частицы не станет меньше некоторого порогового значения, примерно равного 1,5 , где - ширина запрещённой зоны. Эта стадия длится примерно , что сравнимо со временем замедления частицы в веществе.

На втором этапе в результате различных взаимодействий электронов с кристаллической решёткой электроны падают на дно зоны проводимости, а дырки поднимаются к верхнему краю валентной зоны, т.е. в системе устанавливается состояние с минимальной энергией. Вторая стадия также длится в среднем , и затем распределение скоростей носителей заряда становится тепловым. Т.о. генерация и замедление носителей до тепловых скоростей заканчивается вместе с замедлением ионизирующей частицы.

На следующей стадии с помощью внешнего электрического поля, подведённого к электродам, собирают носители заряда, и полученный импульс тока поступает далее на схему анализа. Следует отметить, что наряду с процессом генерации носителей заряда происходит и обратный процесс их рекомбинации, характеризующийся временем жизни носителей . Следовательно, для хорошей работы детектора необходимо, чтобы время сбора заряда было много меньше . Также следует учесть, что входная цепь анализирующей цепи характеризуется своим временем релаксации и, очевидно, чтобы измерительная цепь не искажала сигнал, необходимо чтобы время сбора заряда было меньше .

Блок схема простейшего гамма спектрометра.

 

Рис.1

 

Он состоит из полупроводникового детектора, обычно помещаемого в экран, который служит защитой от внешнего фонового излучения, согласующего блока (предусилителя), линейного усилителя импульсов и многоканального амплитудного анализатора. Энергия зарегистрированного ? кванта определяется по высоте амплитуды импульса снимаемого с выхода детектора.

Требования, предъявляемые к усилителям, определяются характером импульсов, снимаемых с детектора. Так как фронт импульса (его нарастание по времени) очень короткий, то спектрометрические усилители должны обладать широкой полосой пропускания. Коэффициент усиления, должен быть стабильным и не зависеть от амплитуды усиливаемого сигнала, иначе форма спектра будет искаженной, произойдет уширение пиков и их смещение, т.е. получится несоответствие между действительной амплитудой импульса с детектора и положением канала анализатора, в который эта амплитуда записывается. Немаловажное требование к спектрометрическому усилителю минимальный уровень собственных шумов, поскольку отношение сигнал/шум является определяющим при регистрации ? квантов малой энергии.

Основными требованиями, предъявляемыми к высоковольтному источнику питания детектора, является высокая стабильность напряжения. Практически стабильность источника высокого напряжения должна быть не хуже (0.01 0.05)%.

Спектры гамма-квантов анализируются многоканальными амплитудными анализаторами.

Амплитудный анализатор выполняет две функции:

измерение амплитуд импульсов, поступающих с детектора,

накопление распределения импульсов по амплитудам.

Анализаторы в полупроводниковых гамма спектрометрах обычно имеют 512 каналов и более. Поэтому получение результатов спектрометрических измерений сопряжено с хранением и обработкой значительных массивов информации. Современные анализаторы могут непосредственно встраиваться в канал компьютера или связываться с компьютером посредством стандартных интерфейсов. В этом случае поступающая с анализатора информация может накапливаться непосредственно в оперативной памяти компьютера, обрабатываться соответствующим программным обеспечением, записываться в устройствах долговременного хранения информации. Эти возможности существенно облегчают выполнение спектрометрических задач.

 

Аппаратурная форма линии

 

Для решения задач полупроводниковой гамма спектрометрии необходимо знать форму аппаратурной линии спектрометра, т.е. аппаратурный спектр (гистограмму) для монохроматического источника гамма-квантов. Форма аппаратурной линии определяется параметрами детектора и зависит от энергии гамма-квантов.

В детекторах относительно малых размеров (~ 10 20мм) многократные взаимодействия гамма-квантов маловероятны. В этом случае распределение вторичных заряженных частиц по энергиям можно представить следующим образом:

1. Моноэнергетические электроны, возникающие при фотопоглощении ? квантов атомами вещества детектора. Энергия таких электронов равна энергии ? кванта за вычетом энергии связи К-электрона (реже L- или M-) в атоме. Возбужденный атом переходит в основное состояние путем испускания характеристического рентгеновского излучения или Оже электрона, которые легко поглощаются веществом. Поэтому практически вся энергия регистрируемого ? кванта превращается в кинетическую энергию вторичных электронов. Это приводит к тому, что амплитуда импульса на выходе детектора, соответствующая процессу фотопоглощения ? кванта в детекторе, будет пропорциональна энергии гамма кванта, а не энергии фотоэлектрона. Наблюдаемый при этом пик в спектре амплитуд импульсов называется пиком полного поглощения или фотопиком. В реальном детекторе всегда имеется неопределенность преобразования энергии кван