Иерархическое управление большими системами
Методическое пособие - Компьютеры, программирование
Другие методички по предмету Компьютеры, программирование
однородности, так как z1 появляется линейно в (4.3.70). Следующая системная переформулировка задач поможет избежать однородности.
Часть а подсистема 1, переменные состояния
Часть б подсистема 1, переменные управления
Часть в подсистема 2, переменные состояния
Часть г подсистема 2, переменные управления
4.3.3.а. Переформулировка 1.
Bauman (1968) предложил переписать ограничения взаимодействия квадратичной формы
(4.3.71)
которая даст следующее необходимое условие для оптимизации на первом уровне:
(4.3.72)
для первой подсистемы и
(4.3.73)
для второй подсистемы. После введения формулы Риккати (4.3.72) и (4.3.73) мы получим:
и
где ki(t) i-я скалярная нестационарная матрица Риккати для подсистемы. Согласование на втором уровне достигается через следующие итерации:
Эта переформулировка помогает избежать однородности, но делает схождение итераций второго уровня очень медленным.
4.3.3.б. Переформулировка 2.
Singh (1980) предложил альтернативную формулировку, которая не только позволит избежать однородности, но и даст хорошее схождение процедура основывается на том, чтобы найти х через вектор взаимодействия z и подставить его в функцию оценки, т.е. z можно представить как:
где G считается неоднородной и переформулированный Гамильтониан представлен в виде:
В этом примере матрица G однородна, но решение можно получить. Гамильтониан имеет вид:
А задача подсистемы первого уровня имеет вид
и
вторую подсистему можно решить сразу же, так как уравнение p2 косостояние отделено от х2 и может быть решено в обратном порядке и подставлено в уравнение х2, что приведет к тому, что решение уравнения Риккати в данном примере не требуется. Но для первой подсистемы, исходя из формулировки задач первого уровня в прогнозировании взаимодействия (4.3.40) (4.3.51), необходимо как уравнение Риккати, так и открытое сопряженное (компенсирующее) векторное уравнение. Для этого примера задача первой подсистемы имеет вид
где два дифференциальных уравнения для ki(t) и gi(t) нужно решить в обратном порядке. В то время как для второй подсистемы не нужно решать вспомогательное уравнение, надо решить два таких уравнения для первой подсистемы. В общем эта переформулировка требует решения
(4.3.74)
что означает, что уравнения вектора косостояния p отделено от х и может быть решено в обратном порядке (без решения уравнения Риккати) и подставлено в верхнее уравнение для нахождения х. Так как матрицы A, B, Q и R блок-диагональные, задачу (4.3.74) можно разделить на N задач подсистем с условием, что отделяемо от z, где V=G-1.