Заряженная плазма, способы теоретического описания, перспективы исследований
Диссертация - Физика
Другие диссертации по предмету Физика
/p>
- плотности частиц ?-ого компонента плазмы
- средней скорости ?-ого компонента плазмы
- тензора давления для ?-ого компонента плазмы
Эти величины изменяются самосогласованным образом под действием электрических и магнитных полей, которые определяются из уравнений Максвелла. Достоинством такого описания является его простота. В самом деле, если плазма холодная, то неоднородностью давления можно пренебречь, что позволит замкнуть систему уравнений для плотности, средней скорости, Е - электрического В - и магнитного полей, состоящую из уравнений непрерывности, гидродинамического уравнения движения и уравнений Максвелла. Такая модель пригодна как для описания состояния равновесия, так и для исследования устойчивости заряженной плазмы. Поскольку описание является макроскопическим, устойчивость плазмы, очевидно, зависит от таких основных параметров равновесного состояния, как распределение равновесной плотности и распределение равновесной скорости. Целесообразность такого гидродинамического подхода для описания заряженной плазмы обусловлена его простотой. При этом относительно нетрудно учесть и конченые размеры системы. Однако макроскопический (гидродинамический) подход имеет два существенных недостатка. Во-первых, нельзя непосредственно обобщить модель холодной плазмы на случаи, когда проявляются эффекты, связанные с конечной температурой, поскольку, вообще говоря, неизвестно, какое уравнение состояния следует использовать для определения тензора давления. Во-вторых, некоторые явления, как, например, затухание Ландау, а также волны и неустойчивости, связанные со структурой распределения частиц в фазовом пространстве, не могут быть исследованы при гидродинамическом описании как нейтральной, так и заряженной плазмы.
Для учета эффектов, связанных с конечной температурой, при исследовании равновесия и устойчивости заряженной плазмы необходимо использовать кинетически подход. При этом электрические и магнитные поля Е и В и одночастичная функция распределения изменяются самосогласованно в соответствии с уравнениями Власова-Максвелла. В рамках кинетического подхода нетрудно построить самосогласованные равновесные состояния. Кроме того, существует широкий класс плазменных волн и неустойчивостей, зависящих от детальной структуры равновесной функции распределения в пространстве импульсов и выпадающих из рассмотрения в гидродинамической модели холодной плазмы. Следует отметить, что, хотя система уравнений Власова-Максвелла позволяет построить широкий класс неоднородных равновесных состояний, исследовать с их помощью устойчивость таких состояний обычно сложнее, чем при использовании гидродинамического уравнения.
2.1. Кинетическое описание
Эволюция одночастичной функции распределения в конфигурационно-импульсном пространстве описывается релятивистским уравнением Власова, а электрическое Е и магнитное В поля, определяются самосогласованным образом из уравнений Максвелла. Процедура отыскания равновесных состояний определяемых уравнением Власова и уравнениями Максвелла, заключается в приравнивании производной по времени нулю и нахождении стационарных решений, удовлетворяющих исходным уравнениям.
Вообще говоря, во внешнем поле заданной конфигурации может существовать много кинетических равновесий. Все они представляют собой стационарные состояния, которые могут существовать в течение времени, меньшего времени между парными столкновениями. Конкретное равновесное состояние может оказаться неустойчивым, если малые отклонения от него нарастают во времени и пространстве.
Анализ устойчивости системы, описываемой набором уравнений Власова-Максвелла, проводится следующим образом. Функция распределения, электрическое и магнитные поля представляются в виде суммы их равновесных значений и возмущений, зависящих от времени. При малых отклонениях от равновесных уравнения Власова-Максвелла допускают линеаризацию. Если возмущения функции распределения, электрического и магнитного полей нарастают функция распределения является неустойчивой, если же возмущения затухают, то система возвращается к исходному состоянию и является устойчивой.
2.2 Гидродинамическое описание
Гидродинамическое описание основано на уравнениях Максвелла и моментах кинетического уравнения. Как и в случае кинетической модели, равновесные состояния определяются с помощью требования равенства нулю производной по времени. Полученные макроскопические равновесные состояния для количества частиц, средней скорости, давления, электрического и магнитного полей будут описывать различные равновесные конфигурации плазмы. Анализ устойчивости проводится следующим образом, гидродинамические переменные и макроскопические поля представляются в виде суммы их равновесных значений и возмущений. Линеаризация позволяет замкнуть систему уравнений. Анализ полученных решений для возмущений аналогичен анализу при кинетическом описании. Если возмущения нарастают равновесие неустойчиво, в противном случае система возвратится к исходному состоянию и будет устойчивой.
3. Основные результаты и перспективы исследований заряженной плазмы
(по результатам конференции NNP-2001)
Международная конференция "Ненейтральная Плазма-2001" (NNP-2001) была проведена с 29 июля по 2 августа 2001 года в Университете Калифорнии в Сан Диего (UCSD) (США) [23].
Основными темами представленных ?/p>