The manager as a teacher: selected aspects of stimulation of scientsfsc thinking

Курсовой проект - Иностранные языки

Другие курсовые по предмету Иностранные языки

unction is achieved for at the expense of airflows which always collapse. These airflows create motor fans (active SFU) which spend energy earlier reserved, for example, in accumulators. Once these airflows are encapsulated/encased in rubber cylinders they will not collapse any more and will exist irrespective of fans, while carrying out the same function. But now it represents a passive system (D). Now external influence occurs and the pencil has diverged aside. The springs would immediately seek to return a pencil to the former position, i.e. the system starts to operate. Where does it take energy for the actions from? This energy was brought by the external influence in the form of kinetic energy of pushing by a finger which has compressed (stretched) the springs and they have reserved this energy in the form of potential energy of compression (stretching). As soon as external influence (pushing by a finger) has ceased, potential energy of the compressed springs turns to kinetic energy of straightening thereof and it returns a pencil back in the vertical balanced position. External influence enhances internal energy of the system which is used for the performance of the system. The influence causes surplus of internal energy of the system which results in the reciprocal action of the system. In the absence of influence no surplus of the systems internal energy is available which results in the absence of action. External influence brings in the energy in the system which is used to produce reaction to this influence. Functions of springs may be performed by airflows created by fans located on a pencil. In order to “build” airflows surplus of energy of the “fans pencil” system is used which is also brought in from the outside, but stored for use at the right time (for example, gasoline in the tank or electricity in accumulator). Such system would be active because it will use its internal energy, rather than that of external influence. The difference between airflows and springs consists in that the airflows consist of incidental groups of molecules of air (not systems) moving in one direction. Amongst these elements there are executive elements (SFU, air molecules), but there is no control block which could construct a springs-type system out of them, i.e. provide the existence of airflows as stable, separate and independent bodies (systems). These airflows are continually created by fan propellers and as they have no control block of their own they always collapse by themselves. Suppose that we construct some kind of a system which will ensure prevention of the airflows from collapse, lets say, encase them in rubber cylinders, they then may exist independently of fans. But in this case the system of stabilization of the pencils vertical position will shift from the active category to the passive. Hence, both active and passive systems consume energy. However, the passive ones consume the external energy brought in by external influence, while the active ones would use their own internal energy. One may argue that internal energy, say, of myocyte is still the external energy brought in to a cell from the outside, e.g. in the form of glucose. It is true, and moreover, any object contains internal energy which at some stage was external. And we probably may even know the source of this energy, which is the energy of the Big Bang. Some kind of energy was spent once and somewhere for the creation of an atom, and this energy may be extracted therefrom somehow or other. Such brought-in internal energy is present in any object of our World and it is impossible to find any other object in it which would contain exclusively its own internal energy which was not brought in by anything or ever from the outside. Energy exchange occurs every time the systems interact. But passive systems do not spend their internal energy in the process of their performance because they “are not able” of doing it, they only use the energy of the external influence, whereas active systems can spend their internal energy. The passive system is the thorax which performs passive exhalation and many other systems of living organism.

Evolution of systems. Complex control block. For the most efficient achievement of the goal the system always should carry out its action in the optimum way and produce the result of action in the right place and time. The systems control block solves both problems: where and when it is necessary to actuate. In order to be able to operate at the right place it should have a notion of space and the corresponding sensors delivering information on the situation in the given space. In turn, the time of delivery of the result of action with simple systems includes two periods: the time spent for decision-making (from the moment of onset of external influence till the moment of SFU activation) and the time spent for the SFU actuation (from the moment of the beginning of SFU activation till the moment the result of action is achieved). The time spent for the decision-making depends on duration of cycles of the systems performance which issue was discussed above. The time spent for the SFU actuation depends on the SFU properties such as, for example, the speed of biochemical reactions in live cells or the speed of reduction of sarcomere in muscular cells which to a considerable degree depends on the speed of power consumption by these SFU and the speed of restoration of energy potential after these SFU have been actuated. These speeds are basically the characteristics inherent in SFU, but are also determined by service systems which serve these SFU. They may also be controlled by control block. Metabolic, hormonal, prostaglandin and vegetative neural regulation in living organism is intended just for this purpose, i.e. to change to some extent the speeds of biochemical reactions in tissue cells and conditions of delivery of energy resources by means of regulation of (service) respiratory and blood circulation systems. But the notion of “at the right time” means not only the time of actuation in response to the external influence. In many cases there is a need for the actuation to start before external influence is exerted. However, the system with simple control block starts to perform only after the onset of external influence. It is a very significant (catastrophic) drawback for living systems, because if the organism is being influenced upon, it may mean that it is already being eaten. It would be better if the system started to perform before the onset of this external influence. If the external situation is threatening by the onset of dangerous influence, the optimal actions of the system may protect it from such influence. For this purpose it is necessary to know the condition of external situation and to be able to see, estimate and know what actions need to be undertaken in certain cases. In other words, it is necessary to exercise control in order to forestall real result of action prior to external influence. In order to perform these actions it should contain special elements which can do it and which it does not have. Simple control block can exercise control only on the basis of mismatch (divergence/discrepancy) of real result of action with the preset one, because the system with simple control block cannot “know” anything about external situation until the moment this situation starts to influence upon the system. The knowledge of external situation is inaccessible to simple control block. Therefore, simple control block always starts to perform with delay. It may be sometimes too late to control. If the system (the living organism) does not know the external situation, it may not be able to make projection as to what the situation is and catch the victim or forestall encounter with a predator. Thus, simple control block cannot make decisions on the time and place of actuation. For this purpose control block needs a special analyzer which can determine and analyze external situation and depending on various external or internal conditions elaborate the decision on its actions. This analyzer should have a notion of time and space in which certain situation is deployed, as well as corresponding informants (sensors with communication lines between them and this special analyzer) which provide information on the external situation. The analyzer-informant has nothing of this kind. When the hunter shoots at a flying duck, it shoots not directly at the bird, but he shoots with anticipation as he knows that before the bullet reaches a duck it (the duck) will move forward. The hunter, being a system intended for shooting a duck, should see the entire situation at a distance, estimate it correctly, make the projection as to whether it makes sense to shoot, and he should act, i.e. shoot at a duck, only on the basis of such analysis. He cannot wait until the duck touches him (until his “X” is actuated) so that he then can shoot at it. In order to do so he should first single out a duck as the object he needs from other unnecessary objects, then measure a distance to a duck, even if it would be “by eye”. He does it by means of special (visual) analyzer which is neither “X” nor “Y” sensor, but is an additional “C” sensor (additional special remote receptors with afferent paths). Such receptors can be any receptors which are able of receiving information at a distance (haemo-, termo-, photoreceptors, etc). The hunters visual analyzer includes photosensitive rods and cone cells in the eye (photoreceptors), optic nerves and various cerebral structures. He should be able to distinguish all surrounding subjects, classify them and single out a duck against the background of these subjects and locate a duck (situational evaluation). In addition, by means of reciprocal innervation he should position his body in such a way that the gun is directed precisely to the place in front