Емкостные преобразователи

Информация - Радиоэлектроника

Другие материалы по предмету Радиоэлектроника

?яемые в емкостных преобразователях диэлектрики неидеальны, и им свойственны потери. При идеальных диэлектриках сдвиг фаз между током и напряжением равен /2, а если имеются потери, то этот сдвиг уменьшается на угол , называемый углом потерь. Обычно вместо угла рассматривается tg, который для эквивалентной схемы на Рис.8,б равен tg= 1/CR.

Величина, обратная tg, называется добротностью Q емкостного преобразователя

Q=CR (6)

Рис.8 Эквивалентные схемы преобразователя

Угол потерь (tg) для разных диэлектриков различен. Вместе с тем эта величина зависит от температуры, частоты, напряжения на конденсаторе и влажности. Очевидно, что на принципе измерения угла потерь можно строить различные приборы, например, влагомеры. Если менять частоту питающего напряжения на конденсаторе преобразователя, то можно создать прибор для определения дисперсии диэлектрических жидкостей, газов и твердых тел.

В качестве измерительных цепей в емкостных преобразователях применяются делители напряжения, мостовые схемы, колебательные контуры и автогенераторы. Поскольку сигналы, снимаемые с емкостных преобразователей, малы, то измерительные цепи содержат усилители, а соединительные пропала должны быть экранированы.

Рис. 9 Резонансные измерительные системы

Рис. 9 Резонансные измерительные системы

На Рис. 9 приведены измерительные цепи в виде параллельного (а) и последовательного (б) колебательных контуров, питаемых стабильным по амплитуде и частоте напряжением U, снимаемым с генератора Г. При изменении емкости C=C+C напряжение (Рис. 9, а) или ток (Рис. 9, б) в цепи резонансного контура будут меняться, достигая максимума при резонансе =l/. На склонах, резонансной кривой (Рис. 9, в) мелено выбрать участок, близкий к линейному, в середине которого выбирается рабочая точка М, соответствующая среднему значению емкости C преобразователя. При изменении емкости на напряжение на выходе будет меняться на .

Емкостным преобразователь может быть элементом в схеме триггера. На Рис. 10 приведена схема мультивибратора, на выходе которого генерируется непрерывная последовательность импульсов.

Рис. 10 Схема триггера

При проектировании емкостных преобразователей следует обращать внимание на экранирование проводов, выбор изоляции электролиз, устранение поверстного сопротивления изоляции и выбор частоты питания. Чем выше эта частота, тем меньше выходное сопротивление, поэтому нередко частоту питания выбирают большой (до нескольких МГц).

ОБЛАСТЬ ПРИМЕНЕНИЯ

Конструктивные схемы емкостных преобразователей выполняются различных вариантах в зависимости от области применения (Рис. 11) При измерении уровней жидких и сыпучих тел находят применение цилиндрические или плоские конденсаторы (см. Рис. 11,а), емкость которых характеризуется уровнем х и зависит от диэлектрических проницаемостей жидкости , изоляции и воздуха .

Рис. 11 Схемы устройства емкостных преобразователей

Для измерения толщины х ленты 3 из диэлектрика с (см. Рис. 11, б) ее протягивают между электродами 1 и 2, расстояние межу которыми . Емкость конденсатора будет C=s/[(-x)/+x/, где -диэлектрическая проницаемость воздуха.

Для измерения малых перемещений (до единиц микрометров), а также точного измерения быстроменяющихся сил и давлений применяются дифференциальные емкостные преобразователи с переменным зазором (Рис. 11,в). Средний электрод конденсатора укреплен на упругом элементе (мембране, упругой пластинке, растяжках) между неподвижными электродами 1 и 2.

Рассматриваемая схема может быть использована в приборах уравновешивания. Для этого усиленный сигнал с конденсатора после фазочувствительного детектирования может быть подан на обкладки 1 и 2, вследствие чего на средний электрод будет действовать электростатическая сила, уравновешивающая измеряемую силу. На Рис. 11, г и д показаны схемы устройства емкостных преобразователей с переменной площадью. В схеме на Рис. 11, г диэлектрик 1 перемещается по стрелке, а в схеме на Рис. 11, д один из электродов 2 жестко связан с валом и совершает угловые перемещения относительно неподвижного электрода 1.

Возможные области применения датчиков (в том числе и емкостных) чрезвычайно разнообразны, можно выделить лишь отдельные сферы:

  1. промышленная техника измерения и регулирования,
  2. робототехника,
  3. автомобилестроение,
  4. бытовая техника,
  5. медицинская техника.

Применимость того или иного датчика в этих сферах определяется прежде всего отношением цена/эффективность. При промышленном применении определяющим фактором является погрешность, которая при регулировании процессов должна составлять 1...2%, а для задач контроля - 2...3%. В этих случаях цены датчиков превышают 100 немецких марок ФРГ. Для специальных применений в области робототехники и медицинской техники цены датчиков могут достигать даже уровня 10...100 тыс. немецких марок ФРГ. Благодаря внедрению новых технологий изготовления (высоковакуумное напыление, распыление, химическое осаждение из газовой фазы, фотолитография и т. д.) и новых материалов непрерывно расширяются сферы применения датчиков, недоступные ранее из-за их высокой цены.

ЗАКЛЮЧЕНИЕ

До недавнего времени конструкторы относились с предубеждением к емкостным датчикам, полагая, что схемы с емкостными датчиками не обеспечивают ни достаточной точности, ни стабильности работы приборов. Считалось обязательным для получения устойчивого сигнала на выходе емкостно?/p>