Единая теория Вселенной или теория всего

Доклад - Биология

Другие доклады по предмету Биология

от друга, и поэтому все они находились в одном месте.

Следующий шаг был сделан в 1924 г., когда в обсерватории Маунт Вилсон в Калифорнии американский астроном Э. Хаббл (18891953) измерил расстояние до ближайших галактик (в то время называемых туманностями) и тем самым открыл мир галактик. Когда астрономы начали исследование спектров звезд других галактик, обнаружилось нечто еще более странное: в нашей собственной Галактике оказались те же самые характерные наборы отсутствующих цветов, что и у звезд, но все они были сдвинуты на одну и ту же величину к красному концу спектра. Видимый свет это колебания, или волны электромагнитного поля. Частота (число волн в одну секунду) световых колебаний чрезвычайно высока от четырехсот до семисот миллионов волн в секунду. Человеческий глаз воспринимает свет разных частот как разные цвета, причем самые низкие частоты соответствуют красному концу спектра, а самые высокие фиолетовому. Представим себе источник света, расположенный на фиксированном расстоянии от нас (например, звезду), излучающий с постоянной частотой световые волны. Очевидно, что частота приходящих волн будет такой же, как та, с которой они излучаются (пусть гравитационное поле галактики невелико и его влияние несущественно). Предположим теперь, что источник начинает двигаться в нашу сторону. При испускании следующей волны источник окажется ближе к нам, а потому время, за которое гребень этой волны до нас дойдет, будет меньше, чем в случае неподвижной звезды. Стало быть, время между гребнями двух пришедших волн будет меньше, а число волн, принимаемых нами за одну секунду (т. е. частота), будет больше, чем когда звезда была неподвижна. При удалении же источника частота приходящих волн будет меньше. Это означает, что спектры удаляющихся звезд будут сдвинуты к красному концу (красное смещение), а спектры приближающихся звезд должны испытывать фиолетовое смещение. Такое соотношение между скоростью и частотой называется эффектом Доплера, и этот эффект обычен даже в нашей повседневной жизни. Эффектом Доплера пользуется полиция, определяя издалека скорость движения автомашин по частоте радиосигналов, отражающихся от них.

Доказав, что существуют другие галактики, Хаббл все последующие годы посвятил составлению каталогов расстояний до этих галактик и наблюдению их спектров. В то время большинство ученых считали, что движение галактик происходит случайным образом и поэтому спектров, смещенных в красную сторону, должно наблюдаться столько же, сколько и смещенных в фиолетовую. Каково же было удивление, когда у большей части галактик обнаружилось красное смещение спектров, т. е. оказалось, что почти все галактики удаляются от нас! Еще более удивительным было открытие, опубликованное Хабблом в 1929 г.: Хаббл обнаружил, что даже величина красного смещения не случайна, а прямо пропорциональна расстоянию от нас до галактики. Иными словами, чем дальше находится галактика, тем быстрее она удаляется! А это означало, что Вселенная не может быть статической, как думали раньше, что на самом деле она непрерывно расширяется и расстояния между галактиками все время растут.(8)

Расширение Вселенной означает, что в прошлом ее объем был меньше, чем ныне. Если в модели Вселенной, разработанной Эйнштейном и Фридманом, время повернуть вспять, события пойдут в обратном порядке, как в кинофильме, запущенном с конца. Тогда получится, что примерно 13 млрд. лет назад радиус Вселенной был очень мал, т. е. вес галактики, межзвездная среда и излучение - словом, все, что ныне составляет Вселенную, было сосредоточено в ничтожно малом объеме, близком к нулю. Это первичное сверхплотное и сверхгорячее состояние Вселенной не имеет аналогов в современной нам действительности.(2) Предполагается, что в то время плотность вещества Вселенной была сравнима с плотностью атомного ядра и вся Вселенная представляла собой огромную ядерную каплю. По каким-то причинам ядерная капля оказалась в неустойчивом состоянии и взорвалась. Это предположение лежит в основе концепции большого взрыва.(12)

Ближе всех к реализации мечты Эйнштейна подошел малоизвестный польский физик Теодор Калуца, который еще в 1921 году задался целью обобщить теорию Эйнштейна, включив электромагнетизм в геометрическую формулировку теории поля (подобно тому, как геометрия пространства-времени описывает гравитацию). Это следовало сделать так, чтобы уравнения теории электромагнетизма Максвелла продолжали выполняться. Калуца понимал, что теорию Максвелла невозможно сформулировать на языке чистой геометрии (в том смысле, как мы ее обычно понимаем), даже допуская наличие искривленного пространства. Калуца сделал следующий шаг за Эйнштейном, добавил к четырёхмерному пространству-времени пятое (не наблюдаемое) изменение в которой электромагнетизм является своего рода "гравитацией" (о слабом и сильном взаимодействии тогда было не известно). Встаёт вопрос: почему же мы никак не ощущаем этого пятого измерения (в отличии от первых четырёх)?

В 1926 г. шведский физик Оскар Клейн предположил, что мы не замечаем дополнительного измерения потому, что оно в некотором смысле "свернулось" до очень малых размеров. Из каждой точки пространства в пятое измерение выходит небольшая петелька. Мы не замечаем всех этих петель из-за малости их размеров. Клейн вычислил периметр петель вокруг пятого измерения, используя известное значение элементарного электрического заряда электрона и других частиц, а также величину гравитационного взаимодействия между част?/p>