Дослідження виконання арифметичних операцій у форматі з рухомою комою
Контрольная работа - Компьютеры, программирование
Другие контрольные работы по предмету Компьютеры, программирование
Міністерство освіти і науки України
Національний університет „Львівська політехніка”
Кафедра ЕОМ
Звіт
з лабораторної роботи №6
з дисципліни: організація та функціонування компютерів на тему:
Дослідження виконання арифметичних операцій у форматі з рухомою комою
Виконав:
ст.гр. КІ-11
Cаноцький М.Т.
Прийняв:
ст..викл.
Кудрявцев О.Т.
Львів 2010
Мета роботи:
- Ознайомитися з поданням чисел у нормальній формі. Засвоїти порядок нормалізації чисел з рухомою комою. Ознайомитися з поняттям “характеристика” для чисел з рухомою комою.
- Вивчити правила додавання (віднімання) двійкових чисел з рухомою комою.
- Розробити алгоритми і програми додавання чисел в арифметиці з рухомою комою в інструкціях навчального компютера - симулятора DeComp.
1. Теоретична частина
1.1 Подання чисел з рухомою комою
число рухомий кома алгоритм
У форматі з рухомою комою, який звичайно називають нормальною формою запису, числа записуються наступним чином:
A = М * d Р ,
де p ціле число, яке називається порядком числа А;
d основа системи числення;
М мантиса числа А (звичайно |M| < 1).
При нормальній формі запис одного числа може приймати різний вигляд у залежності від обмежень, що накладаються на його форму. Фактично місце коми у мантисі М визначається величиною порядку р. Із зміною порядку р у більшу або меншу сторону кома відповідно переміщується ліворуч або праворуч, тобто рухається (“плаває”) у зображені мантиси. Наприклад:
23410 = 234 * 100 = 0,234 * 103 = 0,0234 * 104 = 2,34 * 102 ;
1011012 = 101101 * 100 = 0,101101 * 10110 = 0,00101101 * 101000 .
Можна зауважити, що хоча числа у наведених прикладах однакові за абсолютною величиною, проте мантиса потребує різної кількості розрядів. Для цього, щоб запобігти цьому, звичайно уводять деякі обмеження. Найбільш розповсюдженим і зручним для подання у компютерах обмеженням є наступне:
d-1 M 1.
Числа, що записані у такій формі називаються нормалізованими. Іншими словами, у нормалізованих числах у мантисі першою цифрою перед комою стоїть 0, а перша цифра після коми це цифра відмінна від нуля. Для двійкової системи числення вона дорівнює 1.
Таким чином, мантису розглядають як число менше одиниці, а порядок як ціле число.
Операція нормалізації виконується шляхом зсуву мантиси вліво із зменшенням порядку, або вправо із збільшення порядку на величину, яка дорівнює кількості розрядів, на яку була зсунута мантиса.
Приклад: нормалізувати наступні числа:
0,00237 * 105 = 0,237 * 103 мантиса зсувається на два розряди вліво, тобто збільшується, а порядок зменшується на дві одиниці.
10101,0112 * 1010 = 0,10101011 * 10 111 - мантиса зсувається вправо на 5 розрядів, тобто зменшується, а порядок збільшується на 5 одиниць.
Нормалізоване подання чисел дозволяє зберігати у розрядній сітці компютера більшу кількість цифр, що мають значення, тому точність обчислень підвищується. Зазвичай у компютерах нормалізація здійснюється автоматично як при вводі чисел, так і у процесі обчислень (після виконання чергової операції). При цьому мантиса зсувається ліворуч на необхідну кількість розрядів і виконується відповідне зменшення порядку, тобто виконується “нормалізація вліво”.
При виконанні операції додавання або віднімання нормалізованих чисел з різними порядками одно з них “денормалізується” до вирівнювання порядків, а сума (або різниця) знову нормалізується.
У розрядній сітці компютерів фіксуються знак числа, знак порядку, порядок числа і числовий вираз мантиси.
0 1 2... ...............m+n+1 0 0 1 2 ... m 1 2 ... nЗнак
мантисиЗнак
порядку
Порядок
Мантиса
У компютерах із рухомою комою можливе переповнення розрядної сітки, так само, як і у компютерах із фіксованою комою. Наприклад, переповнення може виникнути при додаванні нормалізованих чисел одного знаку з однаковими порядками. У цьому випадку зявляється “1” ліворуч від коми. Такого роду переповнення коригується зсувом мантиси вправо на один розряд і збільшенням порядку на одиницю, тобто виконується “нормалізація вправо”.
1.2 Правила додавання (віднімання) двійкових чисел з рухомою комою
Додавання і віднімання чисел з рухомою комою виконується у декілька етапів.
- Вирівнювання порядків;
Як відомо, реальна величина (вага) Ni одиниці і-го розряду мантиси визначається не тільки позицією даного розряду, але й порядком р числа, тобто
Ni = d p-і,
де і номер позиції, рахуючи вправо від коми.
При додаванні (відніманні) необхідно, щоб ваги однойменних розрядів мантис чисел були однаковими. Для цього мантиси зсувають одна щодо одної так, щоб їх порядки вирівнялися. Щоб при вирівнюванні порядків не отримати мантиси більшої за одиницю, їх потрібно вирівнювати від меншого до більшого порядку. Мантиса з меншим порядком зсувається вправо (у бік молодших розрядів) на кількість розрядів, що дорівнює різниці порядків і одночасно коректується порядок (збільшується до значення спільного порядку).
- Додавання мантис;
Додавання мантис із вирівненими порядками виконується згідно правил додавання чисел з фіксованою комою. Зазвичай використовується модифікований доповнювальний код. (Пригадайте правила подання відємних чисел з використанням доповнювального або оберненого модифікованого