Главная / Категории / Типы работ

Допплеровский измеритель скорости кровотока

Дипломная работа - Медицина, физкультура, здравоохранение

Другие дипломы по предмету Медицина, физкультура, здравоохранение



В±работки и различные алгоритмы расчета огибающей в совокупности будут влиять на результаты и на качество обработки последующих этапов.

Опытный специалист может много сказать о состоянии исследуемого сосуда только по аудио сигналу допплеровского сдвига или по виду спектрограммы. В этом случае довольно затруднительно бывает определить точную причину того или иного заключения.

С другой стороны, объективные методы не полагаются на оценку пользователя, они должны обеспечить свободный обмен медицинскими методиками между различными учреждениями, и могут выявить скрытые изменения сигнала. В настоящее время, однако, большинство объективных методов сосредоточено на одной стороне сонограммы (например, на огибающей) и могут игнорировать очевидные для человеческого взгляда вещи.

Вывод:

Исходя из вышеизложенного, ультразвуковой медицинский допплеровский прибор целесообразно рассматривать не как средство измерения скорости кровотока или его составляющих, а как средство индикации, позволяющее лишь качественно оценить состояние исследуемого сосуда в частности и сердечно-сосудистой системы в целом.

  1. Расчет надежности

Надежность является одной из основных инженерных проблем. Проблемой надежности занимались всегда с тех пор, как появилась техника. Ненадежные изделия никогда никому не были нужны. Давно уже было понятно, что надежность связана с избыточностью. В связи с этим в инженерных расчетах в различных областях техники широко используются необходимые коэффициенты запаса.

Однако за последние 2530 лет проблема надежности технических систем и входящих в нее элементов сильно обострилась. Это обусловлено главным образом следующими причинами:

Ростом сложности современных технических систем, включающих до 104-106 отдельных элементов;

Интенсивностью режимов работы системы или отдельных
ее частей: при высоких температурах, высоких давлениях, высоких скоростях;

Сложностью условий, в которых эксплуатируется техническая система, например: низкие или высокие температуры, высокие влажность, вибрации, ускорения и радиация и т. п.;

4. Требованиями к качеству работы системы: высокие точность, эффективность и т. п.;

Повышением ответственности функций, выполняемых системой; высокой технической и экономической ценой отказа;

Полной или частичной автоматизацией и исключением непосредственного участия человека при выполнении технической системой ее функции, исключением непрерывного наблюдения и контроля со стороны человека.

Одной из главных причин обострения внимания к проблеме надежности является рост сложности технических систем.

Сложность условий, в которых могут эксплуатироваться современные технические системы, характеризуется работой в широких диапазонах температур от -70 до +70, наличием вакуума, высокой (98100%) влажностью, вибрациями с большой амплитудой и широким спектром частот, наличием линейных ускорений до 10-300 (1000) и даже 20 000 g, наличием высокой солнечной и космической радиации.

Это приводит к тому, что вероятности возникновения отказов могут возрасти в 25100 или даже 5001000 раз по сравнению с вероятностью отказов при работе технических систем в условиях лабораторий.

Сложность аппаратуры и тяжелые эксплуатационные условия контроль за исправностью аппаратуры, входящей в техническую систему, что не дает возможности,

своевременно обнаружить процессы, приводящие к отказу, и предупредить его появление.

Проблема обеспечения надежности связана со всеми этапами создания изделия и всем периодом его практического использования. Надежность изделия закладывается в процессе его конструирования и расчета и обеспечивается в процессе его изготовления путем правильного выбора технологии производства, контроля качества исходных материалов, полуфабрикатов и готовой продукции, контроля режимов и условий изготовления.

Надежность сохраняется применением правильных способов хранения изделий и поддерживается правильной эксплуатацией его, планомерным уходом, профилактическим контролем и ремонтом.

I. При проектировании изделия должны быть учтены следующие факторы:

Качество применяемых компонентов и деталей. Выбор комплектующих компонентов и элементов должен быть проведен с учетом условий работы изделия (климатических и производственных).Элементы должны удовлетворять требованиям по своим функциональным свойствам и характеристикам, иметь необходимую механическую, электрическую и тепловую прочности, требуемую точность и надежность и заданных условиях эксплуатации. Необходимо стремиться применять те компоненты и элементы, входящие в схему и конструкцию изделия, которые показали в случаях, аналогичных конструируемому изделию, наилучшие результаты. Это особенно важно для изделий, выполняющих ответственные функции.

Разработка сложных изделий и систем показала, что при использовании унифицированных компонентов, деталей, узлов и элементов резко повышается надежность изделия (системы). Это связано с тем, что унифицированные элементы лучше отработаны в схемном и конструктивном отношении и имеют установившуюся и хорошо контролируемую технологию изготовления.

В настоящее время широко распространяется модульно-блочный (агрегатный) принцип построения схем и конструкций сложных изделий. Сложное изделие (система) составляется из функциональных элементов, конструктивно оформленных в виде типовых, стандартных по конс?/p>