Додавання гармонічних коливань та затухаючі коливання
Методическое пособие - Физика
Другие методички по предмету Физика
»ьні і горизонтальні платівки).
Нехай ; ; .
Рівняння траекторії результуючого коливання знаходиться шляхом виключення параметра t.
Розглянемо випадки:
1) , тоді рівняння набуває вигляд
2)
3)
4) , то результуюче коливання відбувається по складній траекторії, форма якої залежить від різниці фаз і співвідношення частот.
Якщо провести дотичні до траекторії, паралельні вісям, то відношення чисел дотиків обернено пропорційне частотам коливань, що додаються.
Наприклад:
Рис. 3
Методом фігур Ліссажу визначають невідому частоту.
ВИСНОВКИ
Потенціальна енергія пружно-коливальної системи змінюється як і кінетична енергія з частотою 2 і в тих же межах, але зі зсувом фаз відповідно кінетичної енергії на . Аналогічно при вільних електромагнітних коливаннях енергія з плином часу не змінюється, а переходить із енергії електричного поля конденсатора в магнітну енергію поля котушки і навпаки.
При додаванні гармонічних коливань однакового напрямку і однакової частоти- результуюче коливання є гармонічним тієї ж частоти. В результаті додавання гармонічних коливань близької частоти, однаково спрямованих, одержується биття.
За допомогою фігур Ліссажу визначається невідома частота.
ЗАТУХАЮЧІ КОЛИВАННЯ
ЗМІСТ
Вступ.
1. Затухаючі коливання. Диференціальне рівняння затухаючих механічних та електромагнітних поливань і його рішення. Логарифмічний декремент затухання. Добротність.
2. Вимушені коливання. Диференціальне рівняння вимушених коливань і його рішення.
Висновки.
НАОЧНІ ПОСІБНИКИ ТА ПРИЛАДИ
1. Діафільм “Колебания и волны”.
2. Осцилограф, камертон, мікрофон.
3. Установка для демонстрації затухаючих коливань.
ОРГАНІЗАЦІЙНО-МЕТОДИЧНІ ВКАЗІВКИ ДО ПРОВЕДЕННЯ ЛЕКЦІЇ
Визначити затухаючі коливання згідно з другим законом Ньютона та узагальненим законом Ома одержати диференціальне рівняння відповідно механічних та електромагнітних коливань, графічно зобразити закон затухаючих коливань та визначити їх параметри, звернути увагу на логарифмічний декремент затухання та добротність коливального контура. Продемонструвати за допомогою камертона та на осцелографі затухаючі коливання.
Продемонструвати за допомогою мікрофона та визначити вимушені коливання.
ВСТУП
У реальних коливальних системах за рахунок зміни енергії коливального руху виконується робота сил тертя, а також омічних втрат і випромінювання електромагнітної енергії в електричних коливальних системах. Тому з часом амплітуда вільних коливань зменшується. Практично всі вільні коливання затухаючі і тому вони гармонічні. Проте, якщо сили тертя набагато менші за сили пружності, наприклад, то наближено можна затухаючі коливання вважати гармонічними з певним періодом Т3.
Коливання не затухають, якщо енергія коливальної системи поповнюється за рахунок, наприклад дії зовнішньої гармонічної сили. Частота встановлених вимушених коливань дорівнює частоті дії зовнішньої сили.
1. ЗАТУХАЮЧІ КОЛИВАННЯ. ДИФЕРЕНЦІАЛЬНЕ РІВНЯННЯ ЗАТУХАЮЧИХ МЕХАНІЧНИХ КОЛИВАНЬ ТА ЕЛЕКТРОМАГНІТНИХ КОЛИВАНЬ І ЙОГО РІШЕННЯ. ЛОГАРИФМІЧНИЙ ДЕКРЕМЕНТ ЗАТУХАЮЧИХ КОЛИВАНЬ. ДОБРОТНІСТЬ
Розглянемо вільні затухаючі коливання коливання, амплітуда яких внаслідок втрати енергії реальною коливальною системою з плином часу зменшується. Простим механізмом зменшення енергії коливань зявляється її перетворення в теплоту внаслідок тертя в механічних коливальних системах, а також омічних втрат і випромінювання електромагнітної енергії в електричних коливальних системах.
Закон затухаючих коливань визначається властивостями коливальних систем. Звичайно розглядають лінійні системи ідеалізовані реальні системи.
Лінійними системами являються, наприклад, пружинні маятники при малому розтягуванні пружини (коли слушний закон Гука), коливальний контур, індуктивність, ємність і опір якого не залежить ні від струму в контурі, ні від напруги.
Різні по своїй природі лінійні системи описуються ідентичними лінійними диференціальними рівняннями, що дозволяє підходити до вивчення коливань різної фізичної природи з єдиної точки зору, а також проводити їх моделювання, в тому числі і на ЕВМ.
Диференціальне рівняння вільних затухаючих коливань лінійної системи задається у вигляді:
,
де S коливальна величина, що описує той чи інший фізичний процес,
- const - коефіцієнт затухання,
- циклічна частота вільних незатухаючих коливань тієї ж коливальної системи, тобто при = 0 (при відсутності втрат енергії).
Рішення рівняння у випадку малих згасань ()
,
де - амплітуда затухаючих коливань, а початкова амплітуда.
Рис.
Проміжок часу , за який час амплітуда затухаючих коливань зменшується в е разів, зветься часом релаксації.
Якщо затухання мале, то можна умовно користуватись поняттям періоду як проміжок часу між двома послідовними максимумами (чи мінімумами) коливальної фізичної величини. Тоді період затухаючих коливань з урахуванням формули
рівняється .
Якщо A(t) і A(t+T) - амплітуди двох послідовних коливань, відповідних моментам часу, що відрізняються на період, то відношення