Дистанционные технологии в образовании
Методическое пособие - Педагогика
Другие методички по предмету Педагогика
к нему по цифровой шине адрес/данные. В качестве таких устройств могут быть использованы высокоточные АЦП, ЦАП, счетчики, дополнительные преобразователи сигналов и т.п.
При большом количестве разнообразных задач, возлагаемых на измерительно-управляющую подсистему целесообразно распределять эти задачи между несколькими микроконтроллерами в зависимости от их производительности. В этом случае микроконтроллеры для совместной работы объединяются в сеть на основе стандарта RS-485 (при удалении на десятки и сотни метров) или на основе высокоскоростной шины ГС (при удалении микроконтроллеров не далее 1 м) При такой архитектуре обмен данными по сети осуществляется по принципу ведущий/ведомый, т. е. один из микроконтроллеров или главный компьютер берет на себя функции ведущего и осуществляет общее управление потоками данных по сети.
В зависимости от сложности решаемых задач следует выбирать микроконтроллеры разной архитектуры, начиная от простейших 8-разрядных до мощных 16-ти и 32-разрядных.
В случаях, когда микроконтроллер должен не только производить измерения параметров, но и управлять объектом в зависимости, например, от частотного состава замеренного параметра, т.е. производить некий сложный математический анализ экспериментальных данных в реальном масштабе времени с минимальными временными задержками, требуется применять цифровые сигнальные процессоры (DSP), предназначенные для решения подобных задач.
Использование PLC в качестве устройства сопряжения с объектом в сложных измерительно-управляющих подсистемах позволяет значительно разгрузить главный компьютер от таких рутинных операций как сбор и накопление данных, их предварительная обработка, управление объектом исследования и вспомогательными устройствами.
Микроконтроллерные системы, как правило, используются в тех случаях, когда не требуется высокая скорость сбора небольшого объема данных и несложных алгоритмах предварительной обработки данных.
Комбинированные многоуровневые иерархические системы
Практика работы с автоматизированными измерительно-управляющими системами показывает, что добиться оптимального соотношения стоимости и функциональных возможностей при использовании только одной конкретной системы практически невозможно.
При работе с реальными физическими объектами средней и высокой сложности (например, объединение нескольких разнородных устройств в действующую систему) спектр задач измерения и управления слишком разнообразен. Наряду с задачами высокоточного и быстрого контроля ряда параметров возникают задачи простого включения/отключения какого-либо элемента или технологического оборудования с программно-изменяемой частотой. Тратить на это вычислительные ресурсы главного управляющего компьютера было бы нерационально. Отсюда возникает стратегия использования комбинированных средств и разумного разделения между ними имеющихся вычислительных ресурсов.
Например, при создании лабораторного оборудования, не требующего в процессе работы громоздких промежуточных вычислений, но предполагающего наличие независимых каналов управления и точных измерений, вместо систем на базе VXI или PXI может быть использована комбинированная система, построенная на сочетании одного или нескольких PLC и одной или несколькими Plugin-Card.
В такой комбинированной системе Plugin-Card могут выполнять функции измерения параметров, критичных к времени и синхронизации, например, когда требуется получить осциллограмму сигнала сложной формы с высоким разрешением. При этом PLC, используя свои вычислительные ресурсы, выполняет задачи управления различными устройствами, а также может измерять медленноменяющиеся параметры, например, температуру, перемещения и т. д.
Подобные комбинированные системы сочетают в себе требуемую функциональность при значительно более низкой стоимости по сравнению с системами на основе VXI или PXI.
В целом же, как показывает опыт разработки автоматизированных курсов, для объектов повышенной сложности наиболее эффективны комбинированные системы с трехуровневым иерархическим распределением вычислительных ресурсов.
На объектном уровне, как правило, целесообразно использовать мультипроцессорные подсистемы, вычислительные ресурсы которых (разрядность, быстродействие, объем памяти) необходимо выбирать в зависимости от сложности решаемых задач. Здесь следует настойчиво рекомендовать не экономить в малом, не перегружать микроконтроллер несколькими задачами (даже, если его ресурсы не исчерпаны), а каждую задачу поручать отдельному микроконтроллеру, разработав для него оптимальную программу управления. При таком подходе каждый значимый узел объекта (датчик или группа датчиков, регулятор, преобразователь, нагрузка и т. д.), снабженный отдельным микроконтроллером, становится "информационно прозрачным" и "абсолютно управляемым", что очень важно в системах удаленного доступа. Обмен информацией между такими интеллектуальными устройствами, а также каждого из них с управляющим компьютером осуществляется по сетевым каналам.
На промежуточном уровне должны размещаться сервисные вычислительные средства, обеспечивающие обслуживание, с одной стороны, вычислительных средств объекта (передача данных, пересылка команд на изменение режимов работы оборудования), а, с другой стороны, - запросов удаленных пользователей. Эти достаточно сложные функции возлагаются на сервер комплекса, вычислительные