Диод Шоттки

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

терны малые сопротивления и большие токи в прямом режиме. Барьерная емкость из-за большой площади перехода достигает значений десятков пикофарад. Германиевые выпрямительные диоды применяют до температур 70-80оС, кремниевые до 120-150оС, арсенид-галлиевые до 150оС.

Основные параметры выпрямительных диодов:обр,макс - максимально допустимое обратное напряжение, которое диод может выдержать без нарушения его работоспособности;вып,ср - средний выпрямленный ток;пр,п - пиковое значение импульса тока при заданных максимальной длительности, скважности и формы импульса;пр,ср - среднее прямое напряжение диода при заданном среднем значении прямого тока;ср - средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях;диф - дифференциальное сопротивление диода в прямом режиме.

Особо отметим класс импульсных диодов, имеющих очень малую длительность переходных процессов из-за малых емкостей переходов (доли пикофарад); уменьшение емкостей достигается за счет уменьшения площади p-n-перехода, поэтому допустимые мощности рассеяния у них меньше, чем у низкочастотных выпрямительных диодов. Их используют в импульсных схемах.

К параметрам, перечисленным выше, для импульсных диодов следует отнести общую емкость СД, максимальные импульсные прямые и обратные напряжения и токи, время установления прямого напряжения от момента подачи импульса прямого тока до достижения им заданного значения прямого напряжения и время восстановления обратного сопротивления диода с момента прохождения тока через нуль до момента, когда обратный ток достигает заданного малого значения (рис. 1).

 

Рисунок 1

 

2) Диод Шоттки - разновидность выпрямительных диодов, работающий на основе выпрямляющего контакта металл - полупроводник, образующего контактную разность потенциалов из-за перехода части электронов из полупроводника n-типа в металл и уменьшения концентрации электронов в полупроводниковой части контакта. Эта область обладает повышенным сопротивлением. При подключении внешнего источника плюсом к металлу, а минусом к полупроводнику, потенциальный барьер понизится и через переход пойдет прямой ток.

В диоде Шоттки отсутствуют явления накопления и рассасывания основных носителей, поэтому они очень быстродействующие и могут работать на частотах до десятков ГГц. Прямое напряжение составляет ~0,5 В, прямой допустимый ток может достигать сотни ампер, а обратное напряжение - сотен вольт. ВАХ диода Шотки напоминает характеристику обычных p-n-переходов, отличие состоит в том, что прямая ветвь в пределах 8-10 декад напряжения представляет почти идеальную экспоненциальную кривую, а обратные токи достаточно малы - 10-10…10-9 А.

Конструктивно диоды Шоттки выполняют в виде пластины из низкоомного кремния, на которую нанесена высокоомная эпитаксиальная пленка с электропроводностью того же типа. На поверхность пленки вакуумным напылением нанесен слой металла.

Диоды Шоттки применяют в переключательных схемах, а также в выпрямителях больших токов и в логарифмирующих устройствах, из-за соответствующей вида его ВАХ.

 

Таблица 1 Обозначение диода Шоттки на схеме и Вольтамперная характеристика

Вид диодаОбозначение на схемеВольтамперная характеристикаДиод Шотки

Диоды Шоттки в системных блоках питания. Характеристики, особенности применения и методы проверки

Как показывает текущая статистика отказов современных системных блоков питания, наибольшее количество неисправностей возникает во вторичных цепях источников питания.

Отказы силовых транзисторных ключей (наиболее типовая неисправность блоков питания предыдущих поколений) на сегодняшнее время случаются крайне редко, что является показателем тех успехов, которые были достигнуты за прошедшее пятилетие производителями силовой полупроводниковой электроники.

Одним из самых проблематичных узлов современных блоков питания становятся вторичные выпрямители на диодах Шоттки, что обусловлено большими значениями выходных токов блока питания.

Достоинства диодов Шоттки

В то время как обычные кремниевые диоды имеют прямое падение напряжения около 0.6 - 0.7 В, применение диодов Шоттки позволяет снизить это значение до 0.2 - 0.4 В.

Столь малое прямое падение напряжения присуще только диодам Шоттки с максимальным обратным напряжением порядка десятков вольт.

При больших обратных напряжениях, прямое падение становится сравнимым с аналогичным параметром кремниевых диодов, что ограничивает применение диодов Шоттки низковольтными цепями. Например, для силового диода Шоттки 30Q150 с максимально возможным обратным напряжением (150 В) при прямом токе 15 А падение напряжение нормируется на уровне от 0.75 В (T = 125C) до 1.07 В (T = -55C).

Барьер Шоттки также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту диода.

Это свойство используется в интегральных микросхемах, где диодами Шоттки шунтируются переходы транзисторов логических элементов.

В силовой электронике малая ёмкость перехода (то есть короткое время восстановления) позволяет строить выпрямители, работающие на частотах в сотни кГц и выше. Например, диод MBR4015 (15 В, 40 А), оптимизированный под высокочастотное выпрямление, нормирован для работы при dV/dt до 1000 В/мс.Б.

Благодаря лучшим временным характеристикам и малым емкостям перехода, выпрямители на диодах Шоттки отличаются от традиционных диодных выпрямителей пониженным уровнем помех, что