Pentium IV
Информация - Компьютеры, программирование
Другие материалы по предмету Компьютеры, программирование
? предназначен только для инструкции FSTORE, остальные два состоят из устройств FADD и FMUL. Благодаря этому FPU может выполнять за каждый такт по две инструкции - одну сложения и другую умножения, т. е. 1 ГГц Athlon имеет пиковую производительность 2 GFLOPS. Получается, что у Athlon более совершенная архитектура сопроцессора, чем у Pentium 4.
SSE-2
Поскольку производительность нового процессора очень сильно зависит от скорости поступления команд в исполнительные блоки конвейера, "напрашивается" еще один способ ускорения его работы -- сократить количество команд, необходимых для выполнения ключевых операций. Однако в рамках существующего x86-набора это сделать попросту невозможно: если хоть что-то в нем изменить, CPU потеряет совместимость со старыми программами. Ведь то, что даже на самом современном процессоре до сих пор может исполняться код, написанный для родоначальника всего семейства -- Intel 8086, является особым предметом гордости Intel. Но если нельзя изменить, никто не запрещает дополнить. Так и сделали -- Pentium 4 поддерживает расширенный набор SIMD-команд под кодовым наименованием SSE-2. Во-первых, давайте разберемся с самим термином. SIMD (Single Instruction -- Multiple Data) -- это специальный тип инструкций, когда в качестве аргумента одной команды выступает достаточно большой массив данных. SSE-2 (Streaming SIMD Extensions 2, Потоковые SIMD Расширения 2) -- значительно расширенная версия набора SSE, знакомого нам по Pentium III Coppermine. Набор SSE-2 включает в себя 144 новые инструкции, специально ориентированные на обработку больших входящих потоков данных. Использование SSE-2, по заявлениям Intel, способно поднять на невиданные доселе высоты производительность в мультимедиа-приложениях и играх -- кодирование/декодирование аудио- и видеоданных, распознавание речи, трехмерные компьютерные игры -- вот область применения новых команд. Основной упор делается на то, что теперь многие операции, ранее требовавшие написания целого фрагмента программы, могут быть осуществлены с помощью одной-двух инструкций SSE-2.
Платформа для Pentium 4
Естественно, процессор с таким количеством архитектурных новшеств требовал и принципиально новой платформы. Ее роль на данный момент выполняет новый чипсет Intel i850. Основным моментом, который хотелось бы отметить, является организация работы с памятью в рамках всей связки Pentium 4 i850. Высокоскоростная 400-мегагерцевая RDRAM связана с чипсетом через двухканальную шину, разрядность каждого канала -- 32 бита. Таким образом, в сумме имеем 64 бита и частоту 400 MHz, т. е. пропускную способность порядка 3,2 GBps. Дальше -- больше: полоса пропускания шины FSB, по которой процессор "общается" с чипсетом, также эквивалентна 400 MHz! А учитывая, что сам процессор -- 64-битовый, мы видим, что фактически шина, соединяющая процессор и чипсет, имеет такую же пропускную способность, как шина, соединяющая чипсет с памятью! И опять-таки хочется заметить, что при всей революционности подходов выглядит новая архитектура Intel весьма стройно -- в ней действительно все строго ориентировано на основные приоритеты Pentium 4: потоковое видео и аудио, Internet, мультимедиа, игры.
Системная шина
При все возрастающей производительности процессоров и подсистемы памяти, увеличение скорости уже достаточно пожилой системной шины GTL+ за последний год всего лишь на 33 МГц выглядит не слишком впечатляюще. Поэтому неудивительно, что с выходом Willamette Intel вводит новую системную шину, которая должна значительно повысить пропускную способность. Эта системная шина имеет 128-битные линии с 64-битным доступом, к примеру, у процессоров предыдущих поколений были 32-битные линии. А ее тактовая частота - всего 100 МГц, то есть даже ниже, чем у сегодняшней 133 МГц GTL+, но за счет передачи 4 пакетов за такт, эффективная частота возрастает до 400 МГц.
Таким образом плюсы новой шины очевидны: значительно выросшая пропускная способность - 3.2 Гб/с (400 МГц, 64 бит) против 1.064 Гб/с у сегодняшней GTL+ (133 МГц, 32 бит) и против 1.6 Гб/с у системной шины EV6 под Athlon (200 МГц, 64-бит).
А вот минусы получились замаскированными. 4 пакета данных за один такт - это, конечно, здорово, но только в том случае, когда удастся их предоставить к моменту выполнения очередного такта. Иначе пропускная способность шины будет использоваться далеко не полностью. В общем, 3.2 Гб/с - это максимум, на что мы можем рассчитывать. К тому же, использование новой шины требует применения нового чипсета, что также плюсом назвать достаточно трудно.
Кэш первого и второго уровня
В кэш-памяти первого уровня сохраняются декодированные команды - ~12 Кб микрокоманд, благодаря чему в цикле исполнения устраняются задержки, связанные с раскодированием. Такая технология должна повысить быстродействие кэш-памяти команд и увеличить эффективность использования кэша. Кроме того, процессор Pentium 4 содержит кэш-память второго уровня типа Advanced Transfer Cache объемом 256 Кб, обеспечивающую передачу данных со скоростью 48 Гбит/с, увеличивающуюся пропорционально тактовой частоте ядра. В целом очень неплохо, но ничего революционного.
Относительно L2-кэша, видимо, разработчики посчитали, что "лучшее -- враг хорошего", поэтому он остался таким же, как у Pentium III Coppermine: "учетверенной" ширины 256-битовая шина и работа на частоте ядра. А вот объем L1-кэша уменьшился вдвое и составляет по 8 КВ на команды и данные. Несколько странное решение, однако, возможно, дело просто в том, что процессор "не резиновый", и учитывая количество всех остальных модулей, больший размер L1 просто не удалось интегрировать в ядро. К тому же не стоит забыва