Влияние технологических добавок на структуру и свойства резин

Дипломная работа - Химия

Другие дипломы по предмету Химия

ам олеиновая кислота близка к стеариновой, но больше выцветает на поверхность резины и способствует ускорению старения резин /20/.

Олеиновая кислота используется также для получения пластификатора бутилолеата (бутиловый эфир олеиновой кислоты), который в основном применяется для улучшения эластических свойств и морозостойкости хлоропреновых резин. В отечественной промышленности этот пластификатор известен под условным названием “фригит”.

Применение органических и неорганических активаторов требуется для наиболее эффективного использования органических ускорителей вулканизации каучуков. Основным неорганическим активатором является оксид цинка, однако оксиды магния и свинца также имеют определенное значение. Жирные кислоты, их соли и эфиры являются органическими активаторами /21/.

Активаторы значительно повышают эффективность действия вулканизации, и относительно небольшие добавки их к смеси приводят к значительному повышению степени вулканизации.

Вулканизацией называется процесс, при котором пластичный каучук переходит в эластичную резину или эбонит. Этот процесс, состоящий в связывании макромолекул по их реакционоспособным участкам, называют также структурированием (сшиванием). Обычно этот процесс происходит за счет возникновения редких ковалентных химических связей между макромолекулами под действием специального агента вулканизации. Накопленный к настоящему времени опыт показывает, что создать единый агент вулканизации невозможно. Это связано как с сильным различием молекулярного строения применяемых каучуков, так и с чрезвычайным многообразием условий эксплуатации резиновых изделий (повышенная и пониженная температура, агрессивные среды, вакуум, повышенное давление, радиационное воздействие и т.п.).

В процессе вулканизации, прежде всего, изменяются физические и механические свойства, причем в большей степени заметно улучшение эластических свойств.

Вулканизация приводит к увеличению прочности эластомера. Возникновение химических связей между молекулярными цепочками приводит к уменьшению остаточной деформации резины. В значительной степени при вулканизации изменяются и другие механические и физические свойства, такие как твердость, сопротивление раздиру, истиранию и т.д. Плотность эластомера меняется как вследствие соединения молекулярных цепей химическими связями, так и в результате присоединения агента вулканизации. Вследствие соединения молекулярных цепей химическими (вулканизационными) связями каучук теряет способность к самопроизвольному растворению в растворителях, характерному для исходного невулканизованного каучука. После образования пространственной сетки вулканизат способен лишь к ограниченному набуханию. Равновесная степень набухания (Q) уменьшается с увеличением концентрации поперечных химических связей. В результате вулканизации изменяется влаго- и газопроницаемость, диэлектрическая проницаемость и коэффициент диэлектрических потерь, теплопроводность, температура стеклования и другие свойства эластомера /13,22/.

При рассмотрении зависимости модуля резиновой смеси от продолжительности вулканизации, можно установить три стадии: индукционный период, формирование вулканизационной сетки, реверсия. Индукционный период - это промежуток времени при температуре вулканизации, в течение которого не наблюдается измеримого сшивания. Длительность индукционного периода определяется стойкостью резиновых смесей к преждевременной вулканизации (подвулканизации). Индукционный период вулканизации увеличивает время пребывания резиновых смесей в вязкотекучем состоянии. На этом этапе в ней образуются комплексы ускоритель-активатор-сера, выступающие в качестве реальных сшивающих агентов /23/. Подвески типа Ка-Sx-Уск распадаются на свободные радикалы; при этом вследствие изменения механизма реакции преобладающими становятся межмолекулярные реакции, и эффективность сшивания резко возрастает. В присутствие активаторов характер превращающихся подвесков изменяется.

Изменение характера распада полисульфидных продуктов присоединения в присутствие ускорителей и активаторов оказывает влияние на уменьшение числа побочных реакций, приводящих к модификации макромолекул каучука. Основным направлением реакций является превращение первичных полисульфидных связей в ди- и моносульфидные и получение циклических сульфидов с одновременным расходованием двойных связей. Дополнительного сшивания при этом обычно не наблюдается.

Полисульфидные связи обладают относительно малой энергией (менее 268 кДж/моль), поэтому при температуре вулканизации они сравнительно легко распадаются и перегруппировываются в связи с меньшим числом атомов серы или с образованием внутримолекулярных циклических структур /22/.

Большое влияние на продолжительность индукционного периода и структуру вулканизационной сетки, а следовательно, на свойства вулканизатов оказывают химическая природа ускорителей и активаторов. При использовании эффективных вулканизационных систем подвески в основном превращаются в поперечные связи. При оценке структуры вулканизата с помощью уравнения Муни-Ривлина установлено, что при одинаковых значениях константы С1 константа С2 линейно снижается с увеличением отношения длительности индукционного периода и времени вулканизации до оптимума (по реометрическим данным). Наклон этих зависимостей обусловлен составом вулканизационных групп и типом каучука. Значение ?/p>