Включения ультрамафитов в базальтоидах островных дуг

Статья - География

Другие статьи по предмету География

1, N23). Однако, в лерцолитах и тем более в пироксенитах эти отличия нивелируются. По содержанию CaO некоторые гарцбургиты ксенолитов Авачинского вулкана (табл.1, N3), близки к плутоническим гарцбургитам Восточной Камчатки (табл.1, N22), но отличаются от них повышенной глиноземистостью. Повышенной железистостью и титанистостью характеризуются гарцбургиты района вулкана Бакенинг (табл.1, N17). Пироксениты первых четырех вулканов имеют широко варьирующий состав и не отличаются друг от друга. Аномально высокими содержаниями Al2O3, TiO2 и Na2O при пониженной кальциевости характеризуется один из амфиболитизированных пироксенитов Шивелуча (табл.1, N16). По ряду характеристик он приближается даже к составу черных пироксенитов района вулкана Бакенинг (табл.1, NN20,21). Пироксениты этого района составляют особую группу. Обычно они отличаются повышенной железистостью, высокими содержаниями Al2O3, TiO2 и Na2O (особенно - в некоторых "черных" пироксенитах), низкими значениями для SiO2 и CaO. Плутонический пироксенит Центральной Камчатки (табл.1, N24) при высокой магнезиальности (такой же как в ксенолитах гарцбургитов) обладает низкой глиноземистостью и натровостью, но повышенной кальциевостью.

Данные о редкоэлементном составе рассматриваемых пород представлены в таблице 2. Уменьшение магнезиальности ксенолитов обычно сопровождается возрастанием концентраций Zr, Y, Sr, V, Sc и уменьшением Ni, Co, Cr. Однако встречаются и аномальные образцы. Например, резко повышенными концентрациями Ni, Co и V отличается интенсивно амфиболитизированный пироксенит Шивелуча (табл.2, N16). Гарцбургиты Авачинского вулкана (табл.2, NN1-3) по сравнению с дунитами и гарцбургитами вулканов Шивелуч и Харчинский (табл.2, NN6,11) характеризуются повышенными концентрациями Ni, Cr, V, соизмеримыми с таковыми в альпинотипных гарцбургитах (табл.2, N22). Содержания микрокомпонентов в плутоническом пироксените Центральной Камчатки (табл.2, N24) близки к подобным концентрациям в наименее амфиболитизированном пироксените Шивелуча (табл.2, NN 15).

2. Особенности состава минералов.

 

Рис. 3Минералогические особенности ксенолитов гипербазитов в лавах Камчатских вулканов уже рассматривались в ряде публикаций [15,16,18,21,32,33,44]. Поэтому подробно остановимся на характеристике только наиболее информативных минералов - шпинелей и пироксенов. Минералы рассматриваемых включений были проанализированы с использованием рентгеновского микроанализатора "Camebax" в Институте вулканологии ДВО РАН (аналитик В.М.Чубаров), а также в Геттингенском университете (аналитик Т.Г.Чурикова).

Рис.4 Шпинелиды. Ксенолиты ультрамафитов характеризуются наличием как собственно шпинелей, так и титано-магнетитов. Первые распространены в дунитах, гарцбургитах, верлитах всех трех ассоциаций, а также в пироксенитах, ассоциирующих с базальтоидами внутриплитного геохимического типа (район вулкана Бакенинг). Вторые встречаются преимущественно в пироксенитах дунит-верлит-пироксенитовой ассоциации. Кроме того, титано-магнетиты в виде минералов-узников в оливине были обнаружены в некоторых гарцбургитах Харчинского вулкана, а хромистые титано-магнетиты - в клинопироксенах из гарцбургитов вулкана Шивелуч. Составы шпинелей варьируют в широких пределах от глиноземистых герцинитов до хромистых пикотитов (табл.3). Обычно в ксенолитах одного и того же состава могут присутствовать несколько разновидностей шпинели. По размерности можно выделить три генерации этого минерала: 1)порфировидную (порфиробластовую?) с размером зерен до 3-4 мм, резко выделяющуюся на фоне средне - или мелкозернистого оливин-ортопироксенового агрегата (некоторые гарцбургиты Авачинского вулкана); 2) "акцессорную", зерна которой размером от долей мм до1-1,5 мм заполняют промежутки между образованиями других минералов; 3) реликтовую, заключенную в зернах других минералов (оливинов, клинопироксенов) или шпинелей более поздних генераций и имеющую размеры от 20-30 мк до 100-150 мк. Различаются составы минерала не только разных ассоциаций включений, но и различных генераций. Как видно на рисунке 3, поля фигуративных точек шпинелей из ксенолитов различных ассоциаций группируются в виде трех рядов, для каждого из которых с ростом железистости намечается тенденция перехода от более глиноземистых к менее глиноземистым шпинелям, титано-магнетитам и магнетитам. Первый ряд отражает изменение состава этого минерала в "черных" пироксенитах. Второй ряд характеризует эволюцию состава шпинелей в гарцбургитах и верлитах района Бакенинга и реликтовых герцинитов из ксенолитов Харчинского вулкана. Сюда же попадают также точки составов шпинелей из плутонических альпинотипных гипербазитов восточной Камчатки. Глиноземистые шпинели этих двух рядов проходят сравнительно простой путь эволюции. С ростом железистости минерала уменьшается количество глинозема и магния, увеличивается содержание железа, марганца и титана. При этом степень окисленности железа возрастает незначительно, либо даже уменьшается (табл.3, NN13-14,25-32). Поэтому здесь проявляется главным образом замещение типа Al+3 Cr3.

Рис. 5 Третий ряд эволюции образован полями хром-алюминиевых или хромистых шпинелей дунитов, гарцбургитов и вебстеритов, а также титано-магнетитами и магнетитами из пироксенитов вулканов Авачинский, Харчинский, Ключевской и Шивелуч. Сюда же попадают точки магнетитов из плутонических гарцбургитов.

Картина изменения составов хромсодержащих шпинелей более сложная. В общем случае наблюдаются следующие закономерности. С ростом железис?/p>