Вимірювальний механізм і схема електродинамічних фазометрів

Курсовой проект - Физика

Другие курсовые по предмету Физика

або МД = f1(?) , де f(?) і f1(?) - деякі тригонометричні функції від ? або ?. Такі залежності мають моменти, створювані взаємною індуктивністю між колами приладу, впливом зовнішніх магнітних полів, порушенням урівноваженості рухливої частини приладу.

Теоретичне й експериментальне дослідження показують, що погрішність, викликувана взаємною індуктивністю між колами електродинамічного фазометра, при промисловій частоті 50 гц не перевищує 0,20,35. Підвищення робочої частоти у двухобмоточних фазометрів значно збільшує цю погрішність. Так, наприклад, у двухобмоточного фазометра ЭТФ із номінальною частотою 2 500 гц погрішність від взаємної індуктивності досягає 3,5, при номінальній частоті 8 000 гц 11 . Погрішності трехобмоточного фазометра з однакової в порівнянні з ЭТФ взаємною індуктивністю між нерухомою й рухливою котушками при тих же номінальних частотах рівні відповідно 0,30,4 й 1,5.

Це дозволяє рекомендувати для вимірів на підвищених частотах трехобмоточные фазометри.

Дослідження впливу зовнішніх магнітних полів на показання електродинамічного фазометра показують необхідність застосування астатической системи або магнітне екранування вимірювального механізму. Необхідна також надійне екранування фазосувної котушки, індуктивності, що включає послідовно з однієї з рухливих котушок фазометра. Котушка індуктивності, виконана у вигляді дроселя з П-подібним сердечником, що має повітряні зазори, і із симетричним розташуванням двох однакових котушок, виявляється досить захищеної від впливу зовнішніх магнітних полів.

У роботах А. Д. Нестеренко, В. Л. Уласика і Е. С. Поліщука розглянутий вплив вищих гармонік і кривих струма і напруги на показанн електродинамічних фазометрах, причому різниці між показами приладу при синусоїдальних струмах і напругах, і при наявності у кривих струма і напруги вищих гармонік вважається погрішність другої групи.

Із цим не можна погодитися, тому що з появою вищих гармонік прилад вимірює не кут зрушення фаз ?, а коефіцієнт потужності в колі з несинусоїдальними струмом і напругою. Отже, для визначення погрішності його показання потрібно порівнювати не з показаннями приладу при синусоїдальних струмі й напрузі, а з показаннями іншого, зразкового приладу, що точно вимірює коефіцієнт потужності в колі з гармоніками.

 

ВІТЧИЗНЯНІ ЕЛЕКТРОДИНАМІЧНІ ФАЗОМЕТРИ

 

Електродинамічні фазометри, що випускають вітчизняною промисловістю, за точністю діляться на лабораторні переносні, технічні переносні й щитові стаціонарні прилади, а за схемах включення - на однофазні й трифазні.

Переносний лабораторний однофазний трехобмоточный фазометр ЭЛФ являє собою чотириквадрантний прилад, призначений для виміру cos ? і кута зрушення фаз у колах змінного струму частотою 50 гц. Клас точності приладу 1,5, межі виміру 090180270360 електричних градусів, а по cos ? 10 1. Шкала приладу дворядна, із градуваням в електричних градусах від 0 до 90 і зі значеннями від 1,0 до 0. Різновиду цього приладу ЭЛФ-1, ЭЛФ-2 й ЭЛФ-4 призначені для вимірів cos ? на частотах відповідно 500, 1 000, 400 й 2 400 гц.

Переносний технічний трифазний фазометр типу Д-510 призначений для вимірів у трифазних ланцюгах частотою 50 гц при симетрії струмів і напруг. Клас точності фазометра 1,0. Випускається 12 модифікацій приладу з різними межами виміру за cos ? і струму.

Щитовий однофазний фазометр типу ЭТФ класу 2,5 призначений для виміру cos ? у колах змінного струму частотою від 1 000 до 8 000 гц. Фазометри типу ЭТФ виготовляються на одну з номінальних частот 1 000, 2 500 й 8 000 гц і призначені для вімкнення в коло як безпосередньо, так і через трансформатори струму й напруги. Межі виміру за cos ? 0.5інд 1 0,5емк. Ці фазометри застосовуються в основному в електроустановках підвищеної частоти, наприклад на щитах індукційних печей.

 

ФЕРРОДИНАМІЧНІ ФАЗОМЕТРИ

 

На рис. 3 представлена конструкція магнитопровода, принципова схема й векторні діаграми (для індуктивного і ємнісного характеру навантаження) однофазного ферродннамического фазометра. Основою приладу служить двухмоментний логометр ферродинамічної системи. Обертаючий елемент такого логометра має магнитопровід із двома незалежними повітряними зазорами ?1 й ?2 , з яких хоча б один є функцією кута повороту рухливої частини приладу.

Зєднані послідовно секції I й II котушки, по якій протікає струм навантаження І, створюють у зазорах ?1 й ?2 магнітні поля з індукціями В1 і В2 , причому з достатнім ступенем точності можна вважати:

 

 

(19)

 

де k розмірний коефіцієнт;

?1 й ?2 числа витків секцій I й II (надалі будемо вважати ?1 = ?2 = ?).

Рухома частина приладу складається із двох однакових котушок 1 й 2, жорстко укріплених на одній осі під кутом 180 один до одного. Котушки переміщуються

 

Рис. 3. Однофазний ферродинамічний фазометр, а принципова схема; б векторні діаграми.

 

в зазорах ?1 й ?2. Струми ІU1 й IU2 пропорційні прикладеній напрузі U і зрушені щодо нього по фазі на певні кути ?1 й ?2 , що залежать від характеру елементів z1 й z2 , включених у коло кожної котушки.

Умова рівноваги рухливої частини приладу при рівності моментів, що діють на котушки 1 й 2, виражається в такий спосіб:

 

Де B1 й B2 індукції в зазорах ?1 й ?2;

?u1 й ?u2 числа витків;

su1 й su2 площі котушок 1 й 2;

? - вимірюваний кут зрушення фаз між U й I (знак ?, як звичайно, визначається характером навантаження).

Припустимо

(20)

одержуємо рівняння

 

<