Введение в статистику

Информация - Менеджмент

Другие материалы по предмету Менеджмент

Введение в статистику

Элементарные понятия статистики

Мы выбрали темы, которые иллюстрируют основные предположения большинства статистических методов, предназначенных для понимания "численной природы" действительности (Nisbett, et al., 1987). Мы сосредотачиваем основное внимание на "функциональных" аспектах обсуждаемых понятий, прекрасно понимая, что предлагаемое описание является кратким и не может исчерпать всего предмета обсуждения. Более подробную информацию можно найти во вводных разделах и разделах примеров руководства пользователя системы STATISTICA, а также в учебниках по статистике. Мы рекомендуем следующие учебники: Kachigan (1986) и Runyon and Haber (1976); для углубленного обсуждения элементарной теории и основных понятий статистики см. классическую книгу Kendall and Stuart (1979) (перевод: М.Кендалл и А.Стьюарт "Теория распределений" (том 1), "Статистические выводы и связи" (том 2), "Многомерный статистический анализ" (том 3)). На русском языке см., например, книгу: Боровиков В.П. "Популярное введение в программу STATISTICA", Компьютер Пресс 1998, в которой дается популярное описание основных статистических понятий.

Что такое переменные? Переменные - это то, что можно измерять, контролировать или что можно изменять в исследованиях. Переменные отличаются многими аспектами, особенно той ролью, которую они играют в исследованиях, шкалой измерения и т.д.

Исследование зависимостей в сравнении с экспериментальными исследованиями. Большинство эмпирических исследований данных можно отнести к одному из названных типов. В исследовании корреляций (зависимостей, связей...) вы не влияете (или, по крайней мере, пытаетесь не влиять) на переменные, а только измеряете их и хотите найти зависимости (корреляции) между некоторыми измеренными переменными, например, между кровяным давлением и уровнем холестерина. В экспериментальных исследованиях, напротив, вы варьируете некоторые переменные и измеряете воздействия этих изменений на другие переменные. Например, исследователь может искусственно увеличивать кровяное давление, а затем на определенных уровнях давления измерить уровень холестерина. Анализ данных в экспериментальном исследовании также приходит к вычислению "корреляций" (зависимостей) между переменными, а именно, между переменными, на которые воздействуют, и переменными, на которые влияет это воздействие. Тем не менее, экспериментальные данные потенциально снабжают нас более качественной информацией. Только экспериментально можно убедительно доказать причинную связь между переменными. Например, если обнаружено, что всякий раз, когда изменяется переменная A, изменяется и переменная B, то можно сделать вывод - "переменная A оказывает влияние на переменную B", т.е. между переменными А и В имеется причинная зависимость. Результаты корреляционного исследования могут быть проинтерпретированы в каузальных (причинных) терминах на основе некоторой теории, но сами по себе не могут отчетливо доказать причинность.

Зависимые и независимые переменные. Независимыми переменными называются переменные, которые варьируются исследователем, тогда как зависимые переменные - это переменные, которые измеряются или регистрируются. Может показаться, что проведение этого различия создает путаницу в терминологии, поскольку как говорят некоторые студенты "все переменные зависят от чего-нибудь". Тем не менее, однажды отчетливо проведя это различие, вы поймете его необходимость. Термины зависимая и независимая переменная применяются в основном в экспериментальном исследовании, где экспериментатор манипулирует некоторыми переменными, и в этом смысле они "независимы" от реакций, свойств, намерений и т.д. присущих объектам исследования. Некоторые другие переменные, как предполагается, должны "зависеть" от действий экспериментатора или от экспериментальных условий. Иными словами, зависимость проявляется в ответной реакции исследуемого объекта на посланное на него воздействие. Отчасти в противоречии с данным разграничением понятий находится использование их в исследованиях, где вы не варьируете независимые переменные, а только приписываете объекты к "экспериментальным группам", основываясь на некоторых их априорных свойствах. Например, если в эксперименте мужчины сравниваются с женщинами относительно числа лейкоцитов (WCC), содержащихся в крови, то Пол можно назвать независимой переменной, а WCC зависимой переменной.

Шкалы измерений. Переменные различаются также тем "насколько хорошо" они могут быть измерены или, другими словами, как много измеряемой информации обеспечивает шкала их измерений. Очевидно, в каждом измерении присутствует некоторая ошибка, определяющая границы "количества информации", которое можно получить в данном измерении. Другим фактором, определяющим количество информации, содержащейся в переменной, является тип шкалы, в которой проведено измерение. Различают следующие типы шкал:(a) номинальная, (b) порядковая (ординальная), (c) интервальная (d) относительная (шкала отношения). Соответственно, имеем четыре типа переменных: (a) номинальная, (b) порядковая (ординальная), (c) интервальная и (d) относительная.

Номинальные переменные используются только для качественной классификации. Это означает, что данные переменные могут быть измерены только в терминах принадлежности к некоторым, существенно различным классам; при этом вы не сможете определить количество или упорядочить эти классы. Например, вы с?/p>