Явление электрогенеза

Информация - Физика

Другие материалы по предмету Физика

етыре последовательных периода: локальный ответ, деполяризация, реполяризация и следовые потенциалы (Рис. 5).

 

Рис. 5 Потенциал действия: 1 - локальный ответ, 2 - фаза деполяризации, 3 - фаза реполяризации, 4 - отрицательный следовой потенциал, 5 -положительный (гиперполяризационный) следовой потенциал.

 

Первый период - локальный ответ представляет собой активную местную деполяризацию, возникающую вследствие увеличения натриевой проницаемости клеточной мембраны. Однако при подпороговом стимуле начальное повышение натриевой проницаемости недостаточно велико, чтобы вызвать быструю деполяризацию мембраны. Локальный ответ возникает не только при подпороговом, но и при надпороговом раздражении и является составным компонентом потенциала действия. Таким образом, локальный ответ является первоначальной и универсальной формой реагирования ткани на различные по силе раздражения. Биологический смысл локального ответа состоит в том, что если раздражение мало, то ткань реагирует на него с минимальной тратой энергии, не включая механизмы специфической деятельности. В том же случае, когда раздражение надпороговое, локальный ответ переходит в потенциал действия. Период от начала раздражения до начала фазы деполяризации, когда локальный ответ, нарастая, снижает мембранный потенциал до критического уровня, называется латентным периодом или скрытым периодом. Продолжительность латентного периода зависит от характера раздражения (Рис. 6).

 

Рис. 6 Потенциалы действия, возникающие в ответ на пороговое раздражение коротким - А и длительным - Б стимулами. Внизу показаны раздражающие стимулы, при воздействии которых получены ответы А и Б. ПП - потенциал покоя, Екуд - критический уровень деполяризации мембраны (по А.Л. Каталымову).

 

Второй период - фаза деполяризации. Эта часть потенциала действия характеризуется быстрым уменьшением мембранного потенциала и даже перезарядкой мембраны: внутренняя ее часть на некоторое время становится заряженной положительно, а внешняя отрицательно. В отличие от локального ответа скорость и величина деполяризации не зависит от силы раздражителя. Продолжительность фазы деполяризации в нервном волокне лягушки составляет около 0.2 - 0.5 мс.

Третий период потенциала действия - фаза реполяризации, ее продолжительность составляет 0.5-0.8 мс. В течение этого времени мембранный потенциал постепенно восстанавливается и достигает 75 - 85% потенциала покоя. В литературе второй и третий периоды часто называют пиком потенциала действия.

Колебания мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами. Различают два вида следовых потенциалов - следовую деполяризацию и следовую гиперполяризацию, которые соответствуют четвертой и пятой фазе потенциала действия. Следовая деполяризация является продолжением фазы реполяризации и характеризуется более медленным (по сравнению с фазой реполяризации) восстановлением потенциала покоя. Следовая деполяризация переходит в следовую гиперполяризацию, представляющую собой временное увеличение мембранного потенциала выше исходного уровня. В миелинизированных нервных волокнах следовые потенциалы имеют более сложный характер. Следовая деполяризация может переходить в следовую гиперполяризацию, затем иногда возникает новая деполяризация, лишь после этого происходит полное восстановление потенциала покоя.

Ионный механизм возникновения потенциала действия

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается за счет активации (открывания) натриевых каналов (Рис. 7). При этом ионы Na+ по концентрационному.

 

Рис. 7 Основные состояния натриевых каналов. А. В покое (мембрана поляризована) канал не пропускает ионы Na+, поскольку закрыты m - ворота. Б. При деполяризации m - ворота открываются, и канал активируется (т.е. начинает пропускать ионы Na+). Из-за этого m - ворота называют также активационными. В открытом состоянии проводимость канала в значительной степени определяется его селективным фильтром, который не пропускает анионы и гораздо более охотно пропускает Na+, чем K+ или Са2+. В. При более длительной деполяризации закрываются h - ворота (инактивирующие ворота), расположенные у внутренней стороны мембраны, и канал инактивируется. Реполяризация до уровня потенциала покоя вновь приводит к открыванию h - ворот и закрыванию m - ворот; В этом состоянии канал вновь можно активировать деполяризационным стимулом.

 

При этом ионы Na+ по концентрационному градиенту интенсивно перемещаются из вне- во внутриклеточное пространство. Вхождению ионов Na+ в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na+ становится в 20 раз больше проницаемости для ионов K+.

Поскольку поток Na+ в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя, приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации).

Мембрана характеризуется повышенной проницаемостью для ионов Na+ лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мемб