Энергосбережение на современном этапе

Курсовой проект - Физика

Другие курсовые по предмету Физика

Для решения этой задачи предложено и реализовано множество схемных решений. Например, при питание ЛЛ от сетей с частотой 50 Гц задача совмещения пускового и рабочего режимов (т.е. зажигание и стабилизации разряда) проще всего решается с помощью биметаллического стартера, шунтирующего разрядный промежуток ламп, включенных последовательно с индуктивным балластом. Однако при частотах выше 1 кГц индуктивность балластных дросселей становится столь малой, что запасенной в них энергии оказывается недостаточно для возникновения в лампах дугового разряда. Поэтому наибольшее распространение в ЭПРА получили к настоящему времени резонансные схемы зажигания, включающие последовательный дроссель в силовой цепи лампы и конденсатор в цепи накала. Если резонансная частота LC контура, определяемая из соотношения:

 

(43)

 

совпадает с первой гармоникой напряжения инвертора, то полное сопротивление контура этой гармоники будет определятся только сопротивлением электродов лампы и активным сопротивлением дросселя, и в контуре будет протекать ток, ограниченный этим полным сопротивлением. При этом электроды быстро прогреваются, а на реактивных элементах контура (L и C) возникает высокое резонансное напряжение, достаточное для пробоя разрядного промежутка и зажигания лампы при горячих электродах.

Благодаря своей простоте, резонансная схема зажигания применяется очень широко не менее половины ЭПРА выпускаются именно с такой схемой. Однако, эта схема имеет ряд существенных недостатков: 1) высокое напряжение возникает на реактивных элементах схемы сразу после включения инвертора, т.е. лампа оказывается под напряжением при холодных электродах и зажигание лампы, благодаря этому, происходит при недостаточно прогретых электродах, что приводит к сокращению срока службы ЛЛ и сводит к нулю одно из существенных преимуществ ВЧ питания; 2) ток прогрева электродов может достигать значений, в несколько раз превосходящих допустимые, так как сопротивление холодных электродов значительно меньше, чем горячих, и это также приводит к преждевременному износу электродов и сокращению срока службы ламп; 3) большой ток прогрева вызывает необходимость использования силовых элементов инвертора с большими запасами по току и мощности, так как почти 100% выхода ЭПРА из строя происходит в моменты включения и первичной причиной отказа служит пробой транзисторов инвертора, из-за его перегрузки при прогреве электродов в резонансных схемах; 4) на реактивных элементах при резонансе возникает напряжение до 1 кВ, а иногда и выше, что требует использование конденсаторов, рассчитанных на работу при таких высоких напряжениях, и это, естественно, увеличивает не только их габариты и массу, но и цену.

Недостатки резонансной схемы привели к необходимости поиска альтернативных решений. Например, довольно часто используются схемы ЭПРА с двумя генераторами (инверторами). В них для прогрева электродов используется отдельный инвертор небольшой мощности, а основной инвертор включается с задержкой на 1,54 секунды (в зависимости от мощности ламп) после прогрева электродов до необходимой температуры. Для создания на лампе напряжения, достаточного для её зажигания, параллельно лампе также может включаться конденсатор. Так как напряжение горячего зажигания в несколько раз ниже, чем холодного, то рабочее напряжение конденсатора и нагрузка инвертора в пусковом режиме в такой схеме значительно ниже, чем в простой резонансной схеме. После зажигания ЛЛ инвертор подогрева электродов автоматически отключается. Известны также схемы ЭПРА, в которых для прогрева электродов и работы ламп используется один инвертор, работающий в двух режимах: пусковом и рабочем. При этом электроды прогреваются от специальных накальных обмоток выходного трансформатора инвертора через реактивные балласты, например, дроссели небольшой индуктивности. При включении инвертор работает на низкой частоте, пока не прогреются электроды. После прогрева электродов и зажигания лампы частота генерации автоматически увеличивается в 34 раза, благодаря чему ток подогрева резко уменьшается и перегрева электродов не происходит.

Современная база электронных компонентов ЭПРА позволяет реализовать совмещение функций поджига и стабилизации разряда множеством других схемных решений. Интересно отметить, что почти все фирмы выпускают ЭПРА в вариантах холодного (“мгновенного”) и горячего (“щадящего”) зажигания ЛЛ. Если ЛЛ в течение суток включается не более 5 раз, то холодное зажигание не приводит к сколько-нибудь заметному снижению срока службы ламп. Очевидно, что поскольку “холодное” зажигание позволяет не только значительно упрощать схемы ЭПРА (и тем самым снижать их стоимость), но и экономить электроэнергию (примерно до 2 Вт ни каждой ЛЛ), то схемы с “холодным” зажиганием будут превалировать в будущем. Это подтверждается, в частности, тем обстоятельством, что одна из интересных и перспективных конструкций компактных ЛЛ спиралевидная, изготавливается фирмами “Narva” (ФРГ), МЭЛЗ (Россия) и другими, с новым безопасным цоколем Н19, допускающим только “холодное” включение. Принципиальным недостатком “холодного” включения является невозможность регулирования светового потока ЛЛ.

В некоторых случаях [27] целесообразным является использование электронного балласта, когда ЛЛ запитывается постоянным током. Себестоимость таких балластов ниже, чем на переменном токе из-за более простых схемотехнических