Электропривод и система автоматического управления насосной установки

Дипломная работа - Физика

Другие дипломы по предмету Физика

· статического напора как объект регулирования напора жидкости.

Напор жидкости в сети определяется уравнением:

 

Нс = RQ2 (6.2)

 

где Нс - напор в сети; R - сопротивление в сети (функция расхода жидкости); Q - расход жидкости.

Напор, сообщаемый насосом в сеть определим как:

 

Нн = Н0w*2 - СQ2 (6.3)

 

где Н0 - напор при закрытой задвижке; w* - относительная скорость вращения вала насоса; С - коэффициент; Q - расход жидкости.

Регулируемой величиной в сети является напор, который изменяют путем увеличения подачи насоса. Водопроводную сеть без статического напора можно представить в виде апериодического звена с коэффициентом передачи равным обратному значению сопротивления сети и сравнительно большой постоянной времени (около 0,5с). Следовательно, входной величиной рассматриваемого звена (объекта) будет являться напор в сети, а выходной - подача насоса в сеть.

 

6.3 Разработка структурной схемы и расчет ее параметров

 

6.3.1 Структурная схема системы стабилизации напора

Воспользовавшись математическим описанием технологического объекта можно структурную схему системы стабилизации напора, представленную на рис.6.2.

 

 

Блок СУЭП (система управления электроприводом) включает в себя комплектный преобразователь и двигатель.

Данная структурная схема отражает математическое описание объекта управления (насоса, включенного в водопроводную сеть без статической составляющей напора). Зависимость Нн (Q2; w) имеет вид формулы 6.3, а зависимость М (Q; w) определена при расчете нагрузочных диаграмм (см. формулу 4.3). Постоянную времени сети Тс принимаем равной 0,5 с [1]. Апериодическое звено с постоянной времени Т0 моделирует перепады давления из-за неравномерности выброса воды насосом, принимаем постоянную времени Т0 = 0,01 с. коэффициент обратной связи по напору Кос определим как:

 

Кос = Uз max / Нmax, (6.4)

 

где Нmax - максимальный напор в сети (25 м); Uз max - максимальное напряжение задания, принимаем равным 10 В.

Таким образом, Кос = 10/25 = 0,4 м/В.

 

6.3.2 Структурная схема системы управления электроприводом

В соответствии с основным уравнением электропривода (ф-ла 6.1) и разработанной функциональной схемой электропривода (см. рис.6.1.) составим структурную схему системы управления электроприводом. Разработанная структурная схема представлена на рис.6.3.

 

 

Данная структурная схема отражает математическое описание системы управления электроприводом, построенной по принципу ПЧ-АД.

Задатчик интенсивности ЗИ, представляет собой апериодическое звено с достаточно большой постоянной времени tзи. Постоянную времени tзи из технологических соображений (чтобы уменьшить гидравлические удары в сети) принимаем равной 10 с [1]. Функциональный преобразователь ФП преобразует задание относительной частоты a в напряжение питания U, используя заданную форму кривой разгона. Определим форму кривой разгона, исходя из постоянства перегрузочной способности во всем диапазоне регулирования. Зададимся перегрузочной способностью. Примем перегрузочную способность 2,2. Построим совмещенный график естественной механической характеристики двигателя и механической характеристики насоса без учета перегрузочной способности и с учетом ее. Данный график изображен на рис.6.4.

 

 

По графику (рис.6.4) выбираем три точки на механической характеристике насоса с учетом перегрузочной способности, по которым будем аппроксимировать эту кривую прямыми. Для данных точек находим М и w. Так как систему управления электроприводом, реализованная в комплектном преобразователе обеспечивает программное формирование зависимости U (), то при постоянной частоте, и, следовательно, постоянном напряжении, механические характеристики можно аппроксимировать прямыми линиями. Жесткость характеристик b в таком случае найдем по естественной характеристике:

 

b = Мном / (w0н sн) = 24,523/ (3140,026) = 3, (6.5)

 

где Мном - номинальный момент двигателя, w0н - синхронная частота вращения, sн - номинальное скольжение. Зная момент и скорость для выбранных точек, используя рассчитанную жесткость характеристик b найдем синхронную частоту для характеристики двигателя, проходящей через выбранную точку:

 

w0 = w + М / b, (6.6)

 

где w и М - скорость и момент по графику (рис.6.4.).

Для выбранных точек, рассчитаем напряжение питания двигателя соответствующее найденным скоростям и моментам. Напряжение питания определим по формуле:

 

, (6.7)

 

где Мк - момент, соответствующий выбранной точке, a - частота питающего напряжения, которую можно определить как:

 

a = w0/w0н, (6.8)

 

где w0 - синхронная частота, соответствующая характеристике двигателя, проходящей через выбранную точку, w0н - номинальная синхронная частота двигателя.

Данные, определенные из графика (координаты выбранных точек), а также рассчитанные по формулам 6.4 6.8 сведем в таблицу 6.1.

 

Таблица 6.1.

Расчетные данные для аппроксимации кривой разгона.

№ точкиw, рад/сМ, Нмw0, рад/сa, о. е. Uф, В194,26,6696,420,30729,262204,122,59211,630,674101,623305,83647,783141220

Построенная в соответствии с таблицей 6.1 кривая разгона и ее аппроксимация изображены на рис.6.5 Из рисунка видно, что кривая разгона имеет форму параболы, т.е. имеет место квадратичная зависимость U (). Такой закон управления позволяет уменьшить потери в статоре двигателя, что ведет к снижению общего расхода энергии. Аппроксимирован