Электромеханические измерительные приборы

Курсовой проект - Физика

Другие курсовые по предмету Физика

?орых конструкциях, например, в случае применения кольцеобразного магнита, магнитопровод может отсутствовать), полюсных наконечников 3 и неподвижного сердечника 4. Магнит выполняется из материалов с большой коэрцитивной силой, чаще всего из железоникельалюминиевых сплавов, и является источником магнитного потока. Магнитопровод, полюсные наконечники и сердечник проводят магнитный поток и изготовляются из магнитно-мягких материалов с возможно меньшим магнитным сопротивлением. Цилиндрическая форма сердечника и расточки полюсных наконечников, а также их концентрическое расположение обеспечивают равномерность поля в воздушном зазоре, т. е. в любой точке рабочей части воздушного зазора магнитная индукция В = const. Воздушный зазор имеет радиальную длину порядка 1-2 мм.

В воздушном зазоре располагается рамка 5. Она свободно охватывает сердечник и жестко крепится на полуосях 6, поворот которых вызывает перемещение стрелки 7 по шкале 8. Рамка имеет обмотку из медного или алюминиевого изолированного провода диаметром от 0,03 до 0,2 мм и чаще всего бывает прямоугольной формы. Применяются бескаркасные и каркасные рамки.

В бескаркасной рамке необходимая жесткость катушки обеспечивается путем склеивания ее витков бакелитовым лаком. В каркасных рамках обмотка наматывается на каркас, выполняемый из алюминия, толщиной порядка 0,1-0,2 мм. Каркас необходим не только для того, чтобы увеличить механическую прочность рамки, но также и для получения нужного успокоения подвижной части. В магнитоэлектрических приборах используется магнитоиндукционное успокоение, но без применения специальных успокоителей. При движении рамки в поле постоянного магнита момент успокоения создается за счет взаимодействия вихревых токов, возникающих в цепи обмотки рамки, с полем магнита. Этот момент зависит от величины внешнего сопротивления, на которое включена обмотка рамки, и имеет незначительную величину, Для увеличения момента успокоения на рамку наматывается несколько короткозамкнутых витков. Если же этого недостаточно, то применяется металлический каркас, представляющий собой в электрическом отношении как бы один короткозамкнутый виток.

Уравнение преобразования для магнитоэлектрического измерительного механизма имеет следующий вид:

 

(6)

 

где ? - угол поворота подвижной части;

- вектор магнитной индукции в воздушном зазоре;

- площадь рамки;

- число витков обмотки рамки;

- ток в рамке;

- удельный противодействующий момент спиральных пружин;

- чувствительность механизма по току.

Из уравнения (6) видно, что чувствительность магнитоэлектрического прибора не зависит от угла отклонения и постоянна по всей шкале, т. е. магнитоэлектрические приборы имеют равномерную шкалу. Это позволяет выпускать их комбинированными и многопредельными.

Магнитоэлектрические приборы относятся к числу наиболее точных. Они изготовляются вплоть до классов 0,1 и 0,2. Высокая точность этих приборов объясняется рядом причин. Наличие равномерной шкалы уменьшает погрешности градуировки и отсчета, благодаря сильному собственному магнитному полю влияние посторонних полей на показания приборов весьма незначительно. Внешние электрические поля на работу, приборов практически не влияют. Температурные погрешности могут быть скомпенсированы с помощью специальных схем.

Большим достоинством магнитоэлектрических приборов является высокая чувствительность и малое собственное потребление мощности. В этом отношении магнитоэлектрические приборы не имеют себе равных.

Благодаря этим достоинствам магнитоэлектрические приборы могут применяться с различного рода преобразователями переменного тока в постоянный и для измерений в цепях переменного тока.

К недостаткам магнитоэлектрических приборов следует, отнести несколько более сложную и дорогую конструкцию, чем, например, у электромагнитных приборов, невысокую перегрузочную способность (при перегрузке обычно перегорают токоподводящие пружинки для создания противодействующего момента) и, самое главное, отмеченную выше возможность применения, при отсутствии преобразователей, лишь для измерений в цепях постоянного тока.

Магнитоэлектрические приборы используются главным образом в качестве амперметров, вольтметров и омметров.

 

.2 Магнитоэлектрические амперметры и вольтметры

 

Измерительные механизмы магнитоэлектрических амперметров и вольтметров принципиально не различаются между собой. В зависимости от назначения прибора (для измерения тока или напряжения) меняется его измерительная цепь. В амперметрах измерительный механизм включается в цепь непосредственно или при помощи шунта. В вольтметрах последовательно с измерительным механизмом включается добавочное сопротивление, и прибор подключается к тем точкам схемы, между которыми необходимо измерить напряжение.

Амперметр без шунта применяется в том случае, если весь измеряемый ток можно пропустить через токоподводящие пружинки и обмотку рамки измерительного механизма.

Так как рамка прибора намотана тонким проводом, это не позволяет пропускать через нее токи, превышающие десятки миллиампер. Превышение указанных значений может привести к повреждению провода рамки или спиральной пружинки. Таким образом, возникает задача расширения пределов измерения магнитоэлектрических амперметров и вольтметров.

Расширение пределов измерения амперметров достигается включением шунта параллельно прибору (Р