Электрические аппараты
Методическое пособие - Физика
Другие методички по предмету Физика
) не соприкасаются и ведомый вал 10 разобщен с ведущим валом П.
При подаче на обмотку управляющего напряжения возникает магнитный поток Ф. На полумуфты 3, 5, выполненные из магнитомягкого материала, начинает действовать электромагнитная сила, притягивающая их друг к другу. Таким образом полумуфты и обмотка представляют собой электромагнит. Между дисками 4, жестко связанными с деталями 3 и 5, возникает сила нажатия, обеспечивающая необходимую силу трения и их надежное сцепление.
На рис. 14.3,6 изображена поверхность трения. Элементарный момент трения
dMтр = kтрpyд2nR2dR, (17.1)
где pyд давление на поверхности трения, Па; kTP коэффициент трения; R текущий радиус поверхности трения, м.
Рис.17.3.Электромагнитная фрикционная муфта:
аразрез муфты;
бповерхность трения
Коэффициенты трения для дисков из различных материалов приведены в табл. 17.1.
Коэффициенты трения Таблица 17.1.
МатериалРежим покояРежимдвиженияСталь сталь0,150,15Сталь чугун0,30,18Сталь бронза0,150,15Чугун чугун0,150,15Металлокерамический материал на медной
основе сталь0,30,4
Металлокерамический материал на желез-
ной основе сталь0,40,8
Наиболее совершенны диски из металлокерамики. Металлокерамика на медной основе состоит из 68% меди, 8% олова, 7% свинца, 6% графита, 4% кремния и 7 % железа. Составляющие в порошкообразном состоянии прессуются при высоком давлении (сотни мегапаскалей) и затем спекаются при температуре 700800 С. Аналогично изготовляется металлокерамика на железной основе. Металлокерамические материалы имеют высокое значение kтр и допускают высокую рабочую температуру (до 200 С).
Давление руд определяется износом поверхностей трения дисков. Для металлокерамических материалов оно составляет 0,81, для сталей 0,40,6 МПа.
В процессе пуска момент, который должен быть передан муфтой, возрастает, так как кроме статического момента нагрузки Мн необходимо передать динамический момент Мдин. При этом проскальзывание (пробуксовка) поверхностей трения должно быть небольшим, иначе они могут выйти из строя из-за нагрева до высокой температуры. В режиме пуска
Мтр = Мн + Мдин = Ma + J= Мн kз(I7.2)
где J момент инерции подвижных частей, кг-м2; угловая частота вращения, 1/с; k3 коэффициент запаса, учитывающий возрастание момента муфты при пуске. Значения k3 для различных видов нагрузок приведены ниже:
Вид нагрузкик3
Металлорежущие станки . .1,252,5
Краны, подъемники ...35
Центробежные насосы . . .2 3
Воздуходувки 1,252
Мельницы, дробилки .4,0
При большом передаваемом моменте для уменьшения габаритных размеров муфты применяется многодисковая система (рис. 17.4). Диски 6 связаны с ведущей частью муфты 5 и могут свободно перемещаться вдоль направляющих 7. Диски 8, связанные с электромагнитом ведомой части, также могут перемещаться по направляющей 4. В данной конструкции магнитный поток, создаваемый обмоткой 1, не проходит через диски, а замыкается через магнитопровод 2 и якорь 3, что позволяет уменьшить зазор электромагнита. Момент, развиваемый такой муфтой,
Мтр = Мд(n-1), (17.3)
где Мд момент трения одной пары дисков; п общее число дисков.
Рис. 17.4. Многодисковая фрикционная муфта
Зная поверхность трения S и допустимое давление на поверхности одного диска руд, можно найти основные параметры электромагнита. Поскольку рабочий зазор мал и магнитное поле в рабочем зазоре равномерно, определить электромагнитное усилие можно по формуле Максвелла.
Электромагниты муфты изготавливаются из сплошного материала и поэтому имеют большую постоянную времени. При отключении муфты на контактах коммутирующего аппарата возникает дуга, которая замедляет процесс отключения и вызывает сильную эрозию контактов. При быстром обрыве дуги возможны возникновение перенапряжения и пробой обмотки. Для облегчения процесса отключения обмотка шунтируется разрядным резистором. Для устранения залипания якоря в притянутом состоянии магнитная система должна иметь конечный зазор.
Электромагнитные ферропорошковые муфты
В ферропорошковой муфте барабанного типа (рис. 17.5) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3. Внутри цилиндра располагается электромагнит 4, связанный с ведомым валом 6. Обмотка 5 электромагнита питается через контактные кольца (на рисунке не показаны). Внутренняя полость 7 заполнена ферромагнитным порошком (чистое или карбонильное железо) с зернами размером от 46 до 2050 мкм, смешанными с сухим (тальк, графит) или жидким (трансформаторное, кремнийорганические масла) наполнителем. При обесточенной обмотке и вращении ведущей части (барабана) электромагнит и ведомый вал остаются неподвижными, поскольку ферромагнитные зерна наполнителя свободно перемещаются относительно друг друга. Определенное трение между барабаном и электромагнитом существует, но оно относительно невелико.
При подаче напряжения на электромагнит зерна ферромагнитного порошка теряют свободу перемещения под воздействием магнитного поля обмотки. Вязкость среды,