Шпаргалки по криптографии

Вопросы - Компьютеры, программирование

Другие вопросы по предмету Компьютеры, программирование

иптографическая защита

информации. Процедуры выработки и проверки электронной цифровой подписи на базе

асимметричного криптографического алгоритма. - Введ. 01.01.95. - М.: Изд-во

стандартов, 1994

 

6. Birgitt Pfotzmann. Digital Signature Schemes. General Framework and

Fail-Stop Signatures. - Berlin etc.: Springer-Verlag, 1990. (Lecture Notes in

Computer Science; 1100). - P. 396.

 

7. David Chaum, Hans van Antwerpen. Undeniable Signatures // Advances in

Cryptology - CRYPTO89. - Berlin etc.: Springer-Verlag, 1990. (Lecture Notes in

Computer Science; 435). - P. 212-216.

 

8. David Chaum. Zero-Knowledge Undeniable Signatures // Advances in Cryptology

- EUROCRYPT90. - Berlin etc.: Springer-Verlag, 1991. (Lecture Notes in

Computer

Science; 473). - P. 458-464.

 

9. Amos Fiat, Adi Shamir. How to prove yourself: Practical Solutions to

Identification and Signature Problems // Advances in Cryptology - CRYPTO86. -

Berlin etc.: Springer-Verlag, 1987. (Lecture Notes in Computer Science; 263). -

P. 186-194.

 

10. Uriel Feige, Amos Fiat, Adi Shamir. Zero Knowledge Proofs of Identity //

Proc. 19th Annual ACM Symp. on Theory of Computing. - 1987. - P. 210-217.

 

11. Uriel Feige, Amos Fiat, Adi Shamir. Zero Knowledge Proofs of Identity //

Journal of Cryptology. - Vol. 1, No. 2. - 1988. - P. 77-94.

 

12. Silvio Micali, Adi Shamir. An Improvement of the Fiat-Shamir Identification

and Signature Scheme // Advances in Cryptology - CRYPTO88. - Berlin etc.:

Springer-Verlag, 1989. (Lecture Notes in Computer Science; 403). - P. 216-231.

 

13. Schnorr C.P. Efficient Identification and Signatures for Smart Cards //

Advances in Cryptology - CRYPTO89. - Berlin etc.: Springer-Verlag, 1990.

(Lecture Notes in Computer Science; 435). - P. 239-251.

================================================

 

 

Q: А что есть стандартного в области криптографии в Windows?

 

A: Криптографические функции есть начиная с Win95 osr 2, WinNT 4.0.

В частности функция зашифрования называется CryptEncrypt(a,w), а расшифрования

CryptDecrypt(a,w).

 

 

Q: Где взять более подробное описание (прототипы функций) и

что там используется ?

 

A: Как обычно - берешь Win32 API... Алгоpитмы могyт быть любыми, поcколькy

cиcтема pаcшиpяемая и позволяет подключение дополнительных кpиптопpовайдеpов.

Cтандаpтный кpиптопpовайдеp, входящий в cоcтав Win* иcпользyет RSA для обмена

ключами и ЭЦП, RC2 и RC4 для шифpования и MD5 и SHA для хэшиpования. Описание

констант и функций, например, в wincrypt.h от C++ Builder-а 3.0. Алгоритм-это

преимущественно RSA или сделанный на ее платформе.

 

Provider Type Key Exchange Signature Encryption Hashing

 

PROV_RSA_FULL RSA RSA RC2, RC4 MD5, SHA

PROV_RSA_SIG n/a RSA n/a MD5, SHA

PROV_DSS n/a DSS n/a SHA

PROV_FORTEZZA KEA DSS Skipjack SHA

PROV_MS_EXCHANGE RSA RSA CAST MD5

PROV_SSL RSA RSA varies varies

 

A2: Hу зачем сразу читать header-ы (их потом), есть нормальная документация:

Сообщения и сертификаты:

Аутентификация и шифрование соединений:

Обзор системы на русском:

 

 

 

X. ПРИЛОЖЕНИЯ. Примеры реализации.

Первоначальная мысль вставить это сюда была критически обдумана и отброшена -

слишком большой объем. Вместо этого решено было создать библиотеку реализаций

и сложить в одном месте в инете. Пока это место находится по адресу:

ftp://ftp.wtc-ural.ru/pub/ru.crypt

 

 

XI. Здесь пары вопрос/ответ, которые я затруднился определить в какой-либо

раздел. Вобщем, "разное" :)

 

Q: Как проверить "случайность" моего ГСП (генератор случайной

последовательности).

 

A1: В интеpнете есть "Diehard test battery". Этот комплект содеpжит 15 тестов

чисел на случайность. Адpес

A2:

Предположим у тебя имеется файл (массив,набор чисел) значений некоторой

случайной величины и ставится задача изучения ее свойств, т.е. являются ли

эти значения равномерно распределенными (равновероятными) в некотором

интервале.

Относительно изучаемой случайной величины можно сделать два предположения,

называемых нуль-гипотезой и альтернативной гипотезой:

1) Случайная величина имеет равномерное распределение (нуль-гипотеза)

2) Случайная величина не имеет равномерного распределения, т.е. закон

распределения случайной имеет уклонения от равномерного распределения

(альтернативная гипотеза).

 

В математической статистике сущесвуют ряд тестов, назваемых критериями

согласия для проверки функции распределения случайной величины на предмет ее

соответствия теоретически ожидаемому закону распределения. Примерами

таких критериев согласия являются Хи-квадрат (критерий Пирсона) и критерий

Kолмогорова-Смирнова, критерий серий и т.д. Kритериев много.

Статистические критерии могут установить только отличие теоретического

и экспериментального распределений, поэтому нуль-гипотеза,как правило

выдвигается для проверки - нет ли оснований для ее отбрасывания.

Другими словами невозможно доказать "чистую случайность" последовательности,

но можно с определенной степенью вероятности опровергнуть противоположное

утверждение. Таким образом, для решения является ли различие достоверным

необходимо установить границы для близости-различия частот в выборке и

теоретически ожидаемых частот. Данная величина называется уровнем значимости,

и обычно принимает значения 5%, 1%, 0.1%. Результат называется значимым на

уровне 5%, если правильная нуль-гипотеза будет отклонена не более, чем в 5%

случаев.

 

Kритерий согласия Хи-квадрат.

Пусть необходимо протестировать генератор, выдающий некоторую

последовательность бит, относительно которой выдвигается нуль-гипотеза

о том, что эта последовательность имеет равномерное распределение.

Обозначим