Численная модель эволюции плавающих на сферической мантии и взаимодействующих континентов
Информация - История
Другие материалы по предмету История
?есто нисходящих, возникают горячие восходящие мантийные потоки. Поскольку тепло легче накапливается под серединой суперконтинента, то он чаще должен раскалываться именно посредине.
Очевидно, что может быть много и других процессов, оказывающих влияние на формирование и распад суперконтинентов. Поскольку континенты тормозят выход тепла из мантии, то они частично уменьшают интенсивность конвекции и делают ее менее хаотичной. При взаимодействии мантийной конвекции и континентов конвекция вносит элементы хаоса, а континенты вносят элементы регулирования.
Литература
Добрецов Н. Л., Кирдяшкин А. Г., Глубинная геодинамика, 299c., НИЦ ОИГГМ СО РАН, Новосибирск, 1994.
ТрубицынВ.П., Фазовые переходы, сжимаемость, тепловое расширение, теплоемкость и адиабатическая температура в мантии, Физика Земли, (2), 3-16, 2000а.
ТрубицынВ.П., Основы тектоники плавающих континентов, Физика Земли, (9), 3-40, 2000б.
ТрубицынВ.П., БобровА.М., Физика Земли, (9), 27-37, 1993.
ТрубицынВ.П., ФрадковА.С., Конвекция под континентами и океанами, Физика Земли, (7), 3-14, 1985.
Allegre C. J., Chemical geodynamics, Tectonophysics, 82, 109-132, 1982,
Allegre C. J., Hart S. R. and MinsterJ.F., Chemical structure and the evolution of the mantle and continents determinated by inversion of Nd and Sr isotopic data, Eath Planet. Sci. Lett., 66, 177-213, 1993.
Anderson D. L., Theory of the Earth, Blackwell Scientific Publications, p.366, Boston, Oxford, London, Edonburg, Melborne, 1989.
Anderson D. L., Hotspots, basalts and the evolution of the Earth, Science, 213, 82-89, 1981.
Anderson D. L., Isotopic evolution of the mantle, Earth Planet. Sci. Lett., 57, 13-24, 1982.
Becker T. W., KelloggJ.B. and OConnellR.J., Earth. Planet. Sci Lett., 151, 351, 1999.
Brunet D. and Ph. Machtel, Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity, J. Geophys. Res., 103, 4920-4945, 1998.
Bunge H. P., Richards M. A. and BaumgardnerJ.R., A sensitivity study of the three-dimansional spherical mantle convection at 10 8 Rayleigh number: Effects of depth-depwendent viscosity, heating mode, and endothermic phase change, J. Geophys. Res., 102, 11,991-12,007, 1997.
Davies G. F., Whole mantle convection and plate tectonics, Geophys. J. Roy. Astron. Soc., 49, 459-486, 1974.
Davies G. F., Earths neodymium budget and structure and evolution of the mantle, Nature, 290, 208-213, 1979.
Davies G. F., Geophysical and isotopic cobstraints on mantle convection: an interim eynthesis, J. Geophys. Res., 89, 6017-6040, 1984.
Davies G. F. and Richards M. A., J. Geol., 100, 151, 1992.
Davies G. F., Punctuated of plates and plumes through the mantle transition zone, Earth Planet. Sci. Lett., 136, 363-379, 1995.
DePaolo D. J. and Wasserburg G. J., Nd isotopic variations and petrogenic models, Geophys. Res. Lett., 3, 249-252, 1976.
DePaolo D. J. and Wasserburg G. J., Petrogenic mixing models and Nd-Sr isotopic patters, Geochemica et Cosmochemica Acta, 43, 615-627, 1979.
DePaolo D. J., Crustal growth and mantle evolution, Geochemica et Cosmochemica Acta, 44, 1185-1196, 1980.
DePaolo D. J., Nd isotopic studies; Some new perspectives on Earth structure and evolution, EOS, 52, 137-140, 1981.
Ekstrom G. and Dziewonski A. M., The unique anisotropy of the Pacific upper mantle, Nature, 394, 168-172, 1998.
Forte, A. M., and H. K. C. Perry, Geodynamic evidence for a chemically depleted continental tectonosphere, Nature, 290, 1940-1944, 2000.
Grand S. P., Tomographic inversion for shear velocity beneath the north American plate, J. Geophys. Res., 92, 14,065-14,090, 1987.
Grand S. P., Mantle shear structure beneath the Americas and surrounding oceans, J. Geophys. Res., 99, 11,591-11,621, 1994.
Grand S. P., van der Hilst R. D. and Widiyantoro S., Global seismic tomography: a snaapshot of convection in the Earth, GSA Today, 7, 1-4, 1997.
Gurnis M., Large-scale mantle convection and aggregation and dispersal of supercontinents, Nature, 332, 696-699, 1988.
Gurnis M. and Zhong S., Generation of long wavelengh heterogeneitiey in the mantle dynamics interaction between plates and convection, Geophys. Res. Lett., 18, 581-584, 1991.
Hoffmann A. W. and White W. M., Mantle plumes from ancient crust, Earth Planet. Sci. Lett., 57, 421-436, 1982.
Jackson I., Elastisity, composition and temperature of the Earths lower mantle, Geophys. J. Intern., 134, 291-311, 1998.
Jacobsen S. V. and Wasserburg G. J., The mean age of mantle and crustal reservoirs, J. Geophys. Res., 84, 7411-7427, 1979.
Jacobsen S. V. and Wasserburg G. J., Transport models for crust and mantle evolution, Tectonophysics, 75, 163-179, 1981.
Jeanloz R. and Knittle E., Density and composition of the lower mantle, Phil. Trans. Roy. Astr. Soc. L.A328, 337-389, 1989.
Jordan T. H., Lithospheric slab penetration into the lower mantle beneath the Sea of Okhotsk, J. of Geophysics, 43, 473-496, 1977.
Kaban M. K. ans Schwintzer P., Seismic tomography and implications for models of the Earths mantle, Geoforschung Zentrum Potsdam, Scientific Technical Report STR00/01, 2000.
Kellogg L. H., Hager B. H. and van der HilstR.D., Science, 263, 1881, 1999.
Lowman J. P. and Jarvis J. T., Mantle convection models of continental collision and breakup incorporating finite thickness plates, Phys. Earth Planet. Inter., 88, 53-68, 1995.
Lowman J. P. and Jarvis J. T., Continental collisions in wide aspect ratio and high Rayleigh number two-dimensional mantle convection models, J. Geophys. Res., 101, 25,485-25,497, 1996.
Machetel P. and Weber P., Intermittent layered convection in a model mantle with an endothermic phase change at 670km, Nature, 350, 55-57, 1991.
McCulloch, M. T., and V. C. Bennett, Early differentiation of the Earth: an isotopic perspective, Earths mantle, I.Jackson, Ed., Cambridge Univ. Press, 1998.
ONions R. K., Evensen N. M. and HamiltonP.J., Geochemical modeling of mantle differentiation and crustal growth, J. Geophys. Res., 84, 6091-6101, 1979.
ONions R. K. and Oxburg E. R., Heat and helium in the Earth, Nature, 306, 429-431, 1983.
Nakanuki T., Yuen D. A. and HondaS., The interaction of plumes with transitions zone under continents and oceans, Earth and Planet. Sci. Lett., 146, 379-391, 1997.
Solheim L. P. and Peltier W. R., Phase boundary deflections at 660-km depth and episodically layered isochemical convection in the mantle, J. Geophys. Res., 99, 15,861-15,875, 1994. Steinbach V., Yuen D. A. and ZhaoW., Instability from phase transitions and the timescales of mantle evolution, Geophys. Res. Lett., 20, 1119-1122, 1993.
Tackley P. J., Effects of strongly variable viscosity on three-dimensional compressible convection in planetary planets, J. Gephys. Res., 101, 3311-3332, 1996.
Tackley P. J., Mantle convection and plate tectonics: Toward an integrated physical and chemical theory, Science Print, 2888, 2002-2007, 2000.
Tackley P. J., Stevenson D. J., GlatzmaierG.A. and SchubertG., Effect of multiple phase transitions in three dimension spherical model of convection in Earths mantle, J. Geophys. Res., 99, 15,877-15,901, 1994.
Trubitsyn V. P., Phase Transitions, Compressibility, Thermal Expansion, and Adiabatic Temperature in the Mantle, Izvestiya, Physics of the Solid Earth, 36, 101-113, 2000a.
Trubitsyn V. P., Principles of the tectonics of floating continents, Izvestiya, Physics of the Solid Earth, 36, 101-113, 2000b.
Trubitsyn V. P. and Bobrov A. M., Evolution of the mantle convection after Breakup of a Supercontinent, Izvestia, Physics of the Solid Earth, 29, 768-778, 1994.
Trubitsyn V. P. and Fradkov A. S., Convection under Continents and Oceans, Izvestia, Physics of the Solid Earth, 21, 491-498, 1985.
Trubitsyn V. P. and Rykov V. V., A 3-D numerical model of the Wilson cycle, J. Geodynamics, 20, 63-75, 1995.