Цифровой фотоаппарат и цифровая фотография
Информация - Компьютеры, программирование
Другие материалы по предмету Компьютеры, программирование
точувствительной области от его общей поверхности, в то время как у пикселя полнокадровой матрицы эта область составляет 70%. Именно поэтому в большинстве современных ПЗС_матриц поверх каждого пиксела располагается микролинза. Такое простейшее оптическое устройство покрывает большую часть площади ПЗС-элемента и собирает всю падающую на эту часть долю фотонов в концентрированный световой поток, который, в свою очередь, направлен на довольно компактную светочувствительную область пиксела.
Микролинзы
Поскольку с помощью микролинз удаётся гораздо эффективнее регистрировать падающий на сенсор световой поток, со временем этими устройствами стали снабжать не только системы с буферизацией столбцов, но и полнокадровые матрицы. Впрочем, микролинзы тоже нельзя назвать решением без недостатков.
Являясь оптическим устройством, микролинзы в той или иной мере искажают регистрируемое изображение чаще всего это выражается в потере чёткости у мельчайших деталей кадра- их края становятся слегка размытыми. С другой стороны, такое нерезкое изображение отнюдь не всегда нежелательно - в ряде случаев изображение, формируемое объективом, содержит линии, размер и частота размещения которых близки к габаритам ПЗС-элемента и межпиксельному расстоянию матрицы. В этом случае в кадре зачастую наблюдается ступенчатость (aliasing)- назначение пикселу определённого цвета, вне зависимости от того, закрыт ли он деталью изображения целиком или только его часть. В итоге линии объекта на снимке получаются рваными, с зубчатыми краями. Для решения этой проблемы в камерах с матрицами без микролинз используется дорогостоящий фильтр защиты от наложения спектров (anti -aliasing filter), а сенсор с микролинзами в таком фильтре не нуждается. Впрочем, в любом случае за это приходится расплачиваться некоторым снижением разрешающей способности сенсора.
Если объект съёмки освещён недостаточно хорошо, рекомендуется максимально открыть диафрагму. Однако при этом резко возрастает процент лучей, падающих на поверхность матрицы под крутым углом. Микролинзы же отсекают значительную долю таких лучей, поэтому эффективность поглощения света матрицей (то, ради чего и открывали диафрагму) сильно сокращается. Хотя надо отметить, что падающие под крутым углом лучи тоже являются источником проблем- входя в кремний одного пиксела, фотон с большой длиной волны, обладающий высокой проникающей способностью, может поглотиться материалом другого элемента матрицы, что в итоге приведёт к искажению изображения. Для решения этой проблемы поверхность матрицы покрывается непрозрачной (например, металлической) решёткой, в вырезах которой остаются только светочувствительные зоны пикселов.
Исторически сложилось так, что полнокадровые сенсоры применяются в основном в студийной технике, а матрицы с буферизацией столбцов- в любительской. В профессиональных камерах встречаются сенсоры обоих типов.
В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, чувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной чувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (back -illuminated matrix). В сенсорах такого типа регистрируемый свет падает на подложку, а чтобы обеспечить требуемый внутренний фотоэффект подложка шлифовалась до толщины 10-15 микрометров. Данная стадия обработки сильно удорожала стоимость матрицы, кроме того, устройства получались очень хрупкими и требовали повышенной осторожности при сборке и эксплуатации.
Матрица с обратной засветкой
Очевидно, что при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл, поэтому матрицы с обратной засветкой применяются по большей части в астрономической фотографии.
3. ПЗС-матрицы камер формата DV
От количества и размера ПЗС-матриц во многом зависит качество изображений, которое может быть получено камерой. Особенности ПЗС-технологии, ее возможности и недостатки рассматривает автор статьи.
Для тех, кто серьезно занимается цифровым видео (DV), модели видеокамер с тремя ПЗС являются действующим стандартом. Процесс разделения цветов в видеокамерах с одним кристаллом не позволяет получать изображение профессионального качества, так как сенсоры красного, зеленого и синего цветов в них расположены на одном пикселе увеличенного размера, размещенного на поверхности датчика. Но зато они существенно дешевле, чем аналогичные по функциональным возможностям модели с тремя кристаллами.
В моделях с тремя ПЗС, с помощью призмы, расположенной позади объектива, красная, зеленая и синяя составляющие изображения направляются на соответствующие мишени матрицы. В результате формируются обособленные каналы RGB, которыми можно манипулировать с величайшей точностью.
ПЗС-матрица - это аналоговое устройство: электрический ток возникает в пикселе изображения в прямом соотношении с интенсивностью падающего света. Чем выше плотность пикселей в ПЗС-матрице, тем более высокое разрешение будет давать видеокамера. ПЗС-матрицы, применяемые в видеокамерах стандарта DV, обеспечивают меньшее разрешение, чем 35-миллиметровые кинокамеры, а вот плотность размещения пикселей в некоторых профессиональных моделей фотоа?/p>