Характеристика процесса адсорбции
Дипломная работа - Химия
Другие дипломы по предмету Химия
через адсорбент горячего воздуха.
Применение пылеобразного силикагеля позволяет осуществлять процесс адсорбции непрерывным методом с движением адсорбента и адсорбтива противотоком друг к другу
Десорбция поглощенного газа осуществляется в отпарной секции 7 колонны глухим паром и отдувкой сорбента острым перегретым паром. Последний выводится вместе с тяжелой фракцией-донным продуктом - и отделяется от него конденсацией.
В ректификационной секции 6 установки десорбированный компонент выводится из колонны в виде бокового и донного продуктов. При повышении температуры десорбированные тяжелые компоненты поднимаются в виде флегмы вверх по колонне, вытесняя плохо сорбируемые компоненты. Благодаря такому флегмированию может быть получен донный продукт высокой степени чистоты.
Освобожденный от поглощенных газов адсорбент после десорбции подается из нижней части колонны снова в бункер 1 колонны при помощи газлифта 9 газодувкой 11 и из бункера снова в колонну, совершая таким образом непрерывную циркуляцию.
В качестве адсорбента в описанной установке применяется активированный уголь высокой активации.
Для того чтобы активность угля не падала, часть адсорбента, направляемого газлифтом в бункер, отбирается и пропускается через реактиватор 10, где отпаривается при более высокой температуре. Реактиватор обогревается топочными газами. Отдувка сорбента производится острым паром, который отводится вверху реактиватора вместе с продуктами отдувки. Благодаря реактивации активность сорбента при длительной работе установки не снижается.
Работа установки полностью автоматизирована, что способствует получению продуктов высокой чистоты (99%).
Потери адсорбента от износа составляют за один цикл от 0,001 до 0.0005%.
Производительность колонны разделения определяется максимально допустимыми нагрузками по газу на единицу сечения колонны, при которых газовый поток еще не разрыхляет (взвешивает) слой адсорбента. При разделении газовых смесей нагрузка будет наибольшей в адсорбционной секции колонны. Особенно велика нагрузка адсорбционной секции колонны по сравнению с нагрузкой ректификационных секций в тех случаях, когда разделяемая смесь содержит большое количество легких компонентов. Для повышения производительности колонны в ней устанавливают несколько питающих тарелок, имеющих каждая свою адсорбционную секцию, где осуществляется противоточный контакт газа со свежим адсорбентом. Это достигается индивидуальной подачей адсорбента в верхнюю часть каждой секции и регулированием соответствующего отбора в основании каждой секции с помощью специального распределителя. Схема колонны с двумя питающими тарелками представлена на рис. 3.3.2.
Рис. 3.3.2. - Схема колонны с двумя тарелками питания:, II - адсорбционные секции; 1 - перегородка; 2 - внутриколонная
труба для подачи свежего адсорбента во вторую адсорбционную
секцию; 3 - распределительное устройство
Колонна имеет две адсорбционные секции I и II, разделенные перегородкой 1. Свежий адсорбент подается в секцию II по внутриколонным трубам 2. Оба потока сорбента из двух секций соединяются в пространстве, где помещается распределительное устройство 3, и направляются в ректификационную секцию колонны. Газ при этом также разделяется на два потока, каждый из которых проходит свою адсорбционную секцию. Повышение производительности при этом приблизительно прямо пропорционально числу питающих тарелок.
Распределительная тарелка имеет назначение равномерно распределять газ по сечению колонны и предотвращать унос сорбента газами. Тарелка представляет собой плоскую плиту с отверстиями, в которые завальцованы в определенном порядке патрубки длиной 0,46-0,61 м. Тарелки монтируются патрубками вниз; через патрубки движется адсорбент.
Механизм выгрузки определяет скорость движения адсорбента по колонне и сохраняет направление этой скорости в плоскости по всему сечению колонны. Он состоит из трех описанных выше распределительных тарелок с патрубками; две тарелки неподвижны, а одна-средняя-движется. При возвратно-поступательном движении патрубки средней тарелки попеременно заполняются сорбентом, ссыпающимся с верхней тарелки, и разгружаются через патрубки нижней тарелки. Скорость циркуляции сорбента определяется частотой колебаний подвижной тарелки. Благодаря большому числу патрубков и равномерному их распределению в тарелках выгрузка сорбента с единицы площади сечения колонны везде одинакова, что определяет его плоскопараллельное движение.
Передача адсорбента из колонны в газлифт осуществляется через гидрозатвор, схема устройства которого показана на рис. 3.3.3. Гидрозатвор представляет собой высокую трубу 1 небольшого диаметра, заполненную сорбентом. В нижней части гидрозатвора установлен механизм выгрузки клапанного типа 2, который связан с указателем уровня, помещенным в верхней части гидрозатвора. Такая связь обеспечивает синхронность выгрузки обоими механизмами и заполненность гидрозатвора сорбентом. Гидрозатвор устраняет возможность перетока в колонну газа, подаваемого газодувкой в газлифт.
Рис. 3.3.3 - Схема устройства гидрозатвора:
- труба: 2 - механизм выгрузки; 5 - тарельчатый механизм;
- отпарная секция
Водяной холодильник 2 и отпарная секция 7 выполнены в виде кожухотрубных теплообменников высотой 0,4 м. Сорбент движется внутри трубок диаметром 25 мм, развальцованных в трубных решетках. Таких т