Формирование облика турбовинтового двигателя АИ-24
Контрольная работа - Транспорт, логистика
Другие контрольные работы по предмету Транспорт, логистика
о давления ограничиваются усложнением конструкции и, следовательно, увеличением массы и габаритов двигателя. Для данного двигателя выбираем ?К* = 7,6 с учетом характера изменения Nэуд и Сэ (рисунки 1.1, 1.2)
Выбор КПД компрессора и турбины
Величина изоэнтропического КПД многоступенчатого компрессора по параметрам заторможенного потока зависит от степени повышения давления в компрессоре и КПД его ступеней:
(1.3.1)
где - среднее значение КПД ступеней.
На расчетном режиме среднее значение КПД ступеней в многоступенчатом осевом компрессоре современных ГТД лежит в пределах = 0,88...0,89 [1]. Принимаем = 0,89.
Рассчитываем КПД для ?к* = 7,6:
(1.3.2)
Для определения КПД неохлаждаемой турбины в термогазодинамическом расчете можно использовать соотношение:
(1.3.3)
где h *т неохл - КПД неохлаждаемой турбины.
Потери в элементах проточной части двигателя
Потери в элементах проточной части двигателя задаются значениями коэффициентов восстановления полного давления в этих элементах.
Коэффициент восстановления полного давления для входных устройств:
(1.4.1)
Для самолётных двигателей значение sВХ составляет - 0,95…0,98. Принимаем sВХ = 0,98.
Потери полного давления в камере сгорания вызываются гидравлическим и тепловым сопротивлением. Гидравлическое сопротивление определяется в основном потерями в диффузоре, фронтовом устройстве камеры сгорания, при смешении струи газов, имеющих различные плотности, при повороте потока газов. Рекомендуется выбирать s гидр = 0,93...0,97, принимаем s гидр = 0,97.
Тепловое сопротивление возникает вследствие подвода тепла к движущемуся газу. Примем величину коэффициента теплового сопротивления sтепл = 0,97. Определяем величину коэффициента потерь полного давления в камере сгорания:
s кс = s гидр. s тепл = 0,970,97 = 0,94 (1.4.2)
Потери тепла в камерах сгорания, главным образом, связаны с неполным сгоранием топлива и оцениваются коэффициентом полноты сгорания ?г. Этот коэффициент на расчётном режиме достигает значений 0,985...0,995. Выбираем ? г = 0,99.
При истечении газа из реактивного насадка возникают потери, обусловленные трением потока о стенки канала, а также внутренним трением в газе. Эти потери оцениваются коэффициентом скорости ?с.
Принимаем ?с = 0,99.
С помощью механического КПД учитывают потери мощности в опорах двигателя, отбор мощности на привод вспомогательных агрегатов, обслуживающих двигатель. Механический КПД находится в интервале ?m = 0,98...0,995. Принимаем ?m = 0,98.
Необходимо также производить подогрев элементов входного устройства, а иногда и входного направляющего аппарата во избежание обледенения, поскольку попадание в проточную часть двигателя льда может привести к повреждению лопаток. Для всех этих нужд требуется воздух, отбираемый из-за компрессора или какой-либо его ступени. Отбор сжатого воздуха оценивается относительной величиной . Для расчёта принимаем = 0,05.
Из графиков на рисунке 1.1 видно, что увеличение температуры газа перед турбиной Тг* позволяет значительно увеличить удельную мощность двигателя и следовательно, уменьшить габаритные размеры и массу двигателя. Повышение температуры газа перед турбиной улучшает так же экономичность двигателя (рисунок 1.2). Потребное количество охлаждающего воздуха зависит от температуры газа Тг* и способа охлаждения. Увеличение отбора воздуха на охлаждение турбины при повышении Тг* приводит к снижению темпа роста удельной мощности и темпа уменьшения удельного расхода топлива. На рисунке 1.3 показана зависимость свободной работы двигателя Lсв от Tг* и способа воздушного охлаждения, из которой следует, что назначение более высоких Tг* требует более сложных систем охлаждения.
Рисунок 2 - Зависимость удельной мощности от параметров рабочего процесса: H=0, Мн=0
Рисунок 3 - Зависимость удельного расхода топлива от параметров рабочего процесса: H=0, Мн=0
Рисунок 4 - Влияние температуры газа и способа охлаждения на свободную работу двигателя: 1 - внутреннее конвективное охлаждение; 2 - внутреннее интенсифицированное конвективное охлаждение; 3 - конвективно-пленочное охлаждение; 4 - конвективно-пленочное охлаждение с предварительным охлаждением воздуха на 50…70К; 5 - оболочка из равномерно проницаемых материалов; 6-оболочка при программированной проницаемости по обводу профиля
Термогазодинамический расчет на ЭВМ
ТГДР ГТД-Р NT= 2 1 1 1 ДАТА 11.11.10= 1150. 1250. 1300. 1350. 1400. ANTK=.920.910.900.890.895= 7.60 10.00 10.50 11.00 11.50 ANK =.869.864.864.863.862
ТЕРМОГАЗОДИНАМИЧЕСКИЙ РАСЧЕТ ТВД
ИСХОДНЫЕ ДАННЫЕ: G= 13.60 DGO=.050 HU=.4300E+09 LO= 14.80=.00 MH=.000 CC=100.0 NTB=.910 ПBB=1.000 TBB=1.000 NB=1.000=.980 SK=.940 NГ=.990 SPT=.990 SPH=.970 NM=.980 NPД=1.000=288.15 THO=288.15 TBO=288.15 PH=101325. PHO=101325. PBO= 99299. VH=.0
СХЕМА ПЕЧАТИ: NEY NE CE QT AKC GT FC LCTTK TT PK PГ PTK PT PCNTK LK LTK LTB ПTK ПTB ПТ
КПД LCB NP CPГ КГ RГ R CYKB RB
ТГ=1150.0 ПК= 7.600 SR=.000 SR1=1.000 SR2=1.000 TCO= 746.5
.2 2506..2955E-01.1592E-02 42.45 74.04.2859.2019
.4 903.3 746.5.7547E+06.7094E+06.2465E+06.1069E+06.1037E+06
.9200.2604E+06.2793E+06.1776E+06 2.849 2.305 6.634
.2064E+06.8847 1132. 1.340 287.0.3758E+05.1970E-02
. 1.393 287.0
В результате термогазодинамического расчета двигателя получили следующие параметры: удельная мощность Nеуд =184,2 кВт*с/кг. Определили давление и температуру заторможенного потока в характерных сечениях. Полученные значения основных удельных параметров проектируемого двигателя на ЭВМ соответствуют параметрам прототипа.
СОГЛАСОВАНИЕ ПАРАМЕТРОВ КОМПРЕССОРА И ТУРБИНЫ
Важным процессом проектирования авиационного двигателя является увязка параметров