Фізичні методи дослідження полімерів, їх електричні випробування
Курсовой проект - Физика
Другие курсовые по предмету Физика
?алориметрії, і ДТА. Вимір (інтегрування) теплового потоку в цьому методі проводиться шляхом реєстрації температурного перепаду в багатьох точках оболонки малої теплопровідності, що оточує досліджуваний обєкт. Реєстрація цього перепаду здійснюється диференціальною термобатареєю, що рівномірно покриває поверхню оболонки таким чином, щоб холодні спаї перебували на одній її поверхні, а гарячі на іншій. Звичайно в такій батареї є десятки або сотні диференціальних термоспаїв. По своїх калориметричних можливостях цей метод реєстрації теплового потоку ідентичний методу Тиана-Кальве. Останній, однак, теоретично обґрунтований лише для умов постійної температури, у той час як в обґрунтуванні методу діатермічної оболонки в роботах Барського приводиться теорія виміру теплоємності й теплових ефектів для суттєво змінних температурних умов.
Вимірювання по методу діатермічної оболонки проводяться в умовах квазістаціонарного режиму. Теплоємність визначається по рівнянню
де m маса зразка; K коефіцієнт теплопередачі через оболонку; перепад температури на оболонці; v-швидкість нагрівання; h константа (термічний баласт).
Тепловий ефект визначається зі співвідношення
де k константа; t час; S площа піка, обмеженого кривою температурного перепаду.
У диференціальному варіанті методу застосовуються дві оболонки, одна з яких оточує досліджувану речовину, а інша інертну. У цьому випадку рівняються теплові потоки, що надходять у процесі нагрівання до зразка й інертній речовині.
На основі методу діатермічної оболонки були розроблені автоматичні калориметричні установки для дослідження теплоємності й теплових ефектів у полімерах. В калориметричному блоці розташовувались два або чотири циліндричні мікрокалориметричні гнізда, що включають в себе керамічні оболонки малої теплопровідності з розташованими на їхніх поверхнях термобатареями, що містять звичайно 100150 диференціальних термоспаїв. Звичайні розміри гнізд 0,53см3. Температурний інтервал роботи від -180 до +300С. Типові швидкості нагрівання 15С/хв. Точність визначення теплоємності й теплових ефектів на зразках масою 0,51,0 г становить (23)%.
Робота динамічних калориметрів другої групи, у яких компенсація відбувається безпосередньо в гніздах калориметра, заснована на принципі, уперше реалізованому Клербро, для виміру латентної енергії деформації металів. Згодом цей же принцип був використаний при створенні ряду динамічних калориметрів, з яких найбільше поширення одержав прилад типу DSC-1B, названий диференціальним скануючим калориметром. Незвичний для калориметрії термін скануючий був використаний з метою підкреслити здатність цього приладу давати автоматичне розгорнення теплової потужності, необхідної для компенсації температурних змін при різних швидкостях нагрівання. У широкому змісті слова скануючим є прилад, що дозволяє реєструвати зміни екстенсивної величини при безперервній зміні інтенсивної. У цьому змісті всі динамічні калориметри й прилади для ДТА є скануючими приладами, тому що дозволяють безупинно записувати відповідну різницю температур в залежності від температури.
Калориметричний блок із двома мікрогніздами нагрівається з постійною швидкістю. Два автономні мікронагрівачі, розташовані в кожному із гнізд, автоматично вирівнюють різницю температур, що виникає в процесі нагрівання між вимірювальним й порівняльним гніздами. Теплова потужність, необхідна для цього, автоматично реєструється. Ентальпія процесу визначається по площі під графіком залежності теплової потужності від часу (температури).
Таким чином, фундаментальною відмінністю диференціального калориметра з компенсацією від звичайних приладів для ДТА є реєстрація безпосередньо теплової потужності процесу. При цьому дотримується повна зовнішня подібність термограмм. Цей калориметр дає можливість визначати й температурну залежність теплоємності шляхом порівняння результатів вимірювання на зразку з відомою масою з відповідними результатами вимірів для стандартної речовини (наприклад,). Калориметр дозволяє проводити вимірювання в температурному інтервалі від -100 до +500С при швидкостях нагрівання (охолодження) 0,62 80С/хв. Маса зразка 150 мг. Точність вимірювання теплових ефектів 12%.
1.1.4 Мікрокалориметрія
Для вивчення процесів, що супроводжуються малими тепловими ефектами або, що характеризуються малою тепловою потужністю, застосовуються мікрокалориметри. Для дослідження полімерів в останні роки стали широко використовуватися мікрокалориметри типу Кальве.Ці калориметри, робота яких основана на методі реєстрації теплових потоків диференціальними термобатареями (метод Тиана-Кальве), мають високу чутливість (по температурі до 106С, по тепловому потоці до 107 Дж/с і вище), що дозволяє вивчати процеси тривалістю в кілька годин або навіть десятків годин при загальному тепловому ефекті близько 1 Дж.
Типовий калориметр, робота якого заснована на цьому методі (мал. 1.6), складається з масивного блоку, у двох симетричних циліндричних порожнинах якого розташовані мікрокалориметричні гнізда також циліндричної форми, відділені від поверхні порожнини повітряними зазорами. Уся бічна поверхня гнізд покрита спаями термопар. Спаї протилежного знака перебувають на поверхні порожнини блоку. Залежно від призначення калориметра батареї можуть містити від сотень до тисяч термопар. Термобатареї гнізд зєднані