Блок целочисленной арифметики

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

еры могут не переключиться требуемым образом из-за возможной “игры фронтов” на входах “С” и “D”.

Для решения указанных проблем с целью повышения быстродействия и надежности схемы разобьем все МО на 2 группы.

В первую группу выделим МО у2 , у3 и у12 , связанные не только с переключением триггеров по входам синхронизации, но и с формированием сигналов на информационных входах этих триггеров.

Во вторую все остальные МО, для выполнения которых достаточны импульсные управляющие сигналы с длительностью равной 50 нс. Как правило, в эту группу входят действия, связанные с переключением триггеров по асинхронным входам, либо по входам синхронизации, если сигналы на информационных входах триггеров при этом не меняются.

Для выполнения МО 1-ой группы необходимы дополнительные потенциальные управляющие сигналы (сигналы с длительностью, не меньшей такта Т) , называемые микроприказами. Тогда импульсные управляющие сигналы подаются лишь на входы синхронизации триггеров, а формирование сигналов на информационных входах этих триггеров осуществляется с помощью микроприказов, которые должны поступать в схему ранее и заканчиваться позднее сигналов на входах синхронизации триггеров.

В управляющей части с программируемой логикой микроприказы формируются с помощью разрядов операционного поля микрокоманы, считываемой из управляющей памяти. Обозначим эти разряды и соответствующие им микроприказы через МК(j) , где j = 0 , 1 , 2 , ...

Если использовать три микроприказа, то схема Рис.3. преобразуется к виду, представленному на Рис.4 (без цепей записи со входной шины, без триггеров Тпп , Тзн3 , счетчика циклов и цепи выдачи на выходную шину). Здесь: во-первых, отсутствует триггер переноса, так как при использовании микроприказов сигнал переноса на выходе KSM становится потенциальным, и необходимость в его запоминании отпадает.

Во-вторых, сигналы у15 , у16 , у5 поступающие на один и тот же вход сдвига вправо RG2 , заменен одним сигналом у5 .

С целью упрощения ОЧ устройства заменим 2, 3 ступени схемы на Рис. 4. арифметико-логическим устройством (АЛУ). Тогда количество микроприказов увеличится до 5.

Функциональная схема ОЧ устройства, в которой применяется АЛУ, представлена на Рис. 5. Здесь АЛУ используется для выполнения трех действий, определяемых таблицей 1.

 

Таблица 1.

 

S3S2S1S0 F`0000 A` + C00001 A` + B` + C00110 A` - B` - C0

В таблице А` и B` - значения операндов, поступающих в АЛУ, F` - значение результата, формируемого на входах АЛУ; С0 - значение сигнала на входе переноса младшего разряда АЛУ.

В соответствии с таблицей 1 в схеме Рис 5. использованы пять микроприказов: МК(0) - S0 , MK(1) - S1 , MK (2) - S2 , MK(3) - C0 , MK(4) - вход данных вдвигаемых при сдвиге вправо на RG2.

Работа схемы определяется МП, представленной на Рис. 6. Список используемых импульсных сигналов:

у1: { <RG2=\/ ; у10: Тпп=1

<RG1=\/ ; C Тзн2=/\ } у11: RG2=0

y2: С RG2=\/ y12: Z=RG2

y3: { >RG2=\/ ; >RG1=\/ }

y4: RG3=X

y5: RG2=RG1;

y6: { RG1=X; Tзн3=P3; Tпп=0;

Тзн1=1; СТ=9; }

y7: RG1(0)=1

y8: Тзн1=0

у9: СТ=СТ-1

9

 

X(8 : 0)

 

RG3 MS KSM 0 MS D RG2 D RG1

D 0 1 0

2 D< 1 D< 1

1 3 y16 D> D>

y17 R 8 y7 S0 8

A C y6 C

A0 > y14 >

y4 C C П9 y5 A1 y1 < y1 <

 

1

y5

 

y3 1 D Tпер у15 D Tзн2 D Tзн1

y2 C Р14 у16 1 Р2

у6 R у5 у1 С у14 С

1

y12

1

y11 y13 E

0 ST

1 1 P4 1

2 P7

3 y6 R Тпп ПРС P3 D Tзн3 P8 ...

y6 ЕI

y9 -1 y10 S y6 С

 

 

 

Рис. 3.

 

 

МК(2)

 

RG3 MS KSM 0 MS D RG