Физико-химический метод очистки сточных вод

Информация - Экология

Другие материалы по предмету Экология




достоинством является то, что когда газ не проходит через колонну жидкость не протекает, т.е. такие тарелки более экономичные (рис.1.1).

Рис.1.1. Схема очистки сточных вод в поглотителе.

.4 Ионообменный метод очистки воды

Ионообменный метод очистки воды применяют для обессоливания и очистки воды от ионов металлов и других примесей. Сущность ионного обмена заключается в способности ионообменных материалов забирать из растворов электролита ионы в обмен на эквивалентное количество ионов ионита.

Очистку воды осуществляют ионитами - синтетическими ионообменными смолами, изготовленными в виде гранул размером 0,2...2 мм. Иониты изготовляют из нерастворимых в воде полимерных веществ, имеющих на своей поверхности подвижный ион (катион или анион), который при определенных условиях вступает в реакцию обмена с ионами того же знака, содержащимися в воде. Различают сильно- и слабокислотные катиониты (в Н+- или Na+- форме) и сильно- и слабоосновные аниониты (в ОН- или солевой форме), а также иониты смешанного действия. Основополагающим фактором кинетики процесса является скорость ионообмена между ионами воды и омываемой частицей смолы. На наружной поверхности омываемой частицы образуется неподвижная водяная пленка, толщина которой зависит от скорости потока очищаемой воды и размеров зерна смолы. Ион, который стремится попасть внутрь частицы смолы, в функциональную группу, должен диффундировать из воды через пленку, пройти через граничную поверхность частицы и внутри смолы в растворе набухания устремиться к ассоциации с функциональной группой. Диффузия ионов через пленку является важнейшим этапом процесса.

Избирательное поглощение молекул поверхностью твердого адсорбента происходит вследствие воздействия на них неуравновешенных поверхностных сил адсорбента.

Ионообменные смолы имеют возможность регенерации. После истощения рабочей обменной емкости ионита он теряет способность обмениваться ионами и его необходимо регенерировать. Регенерация производится насыщенными растворами, выбор которых зависит от типа ионообменной смолы. Процессы восстановления, как правило, протекают в автомати взрыхление - 10 - 15 мин, на фильтрование регенерирующего раствора - 25 - 40 мин, на отмывку - 30 - 60 мин. Ионообменную очистку реализуют последовательным фильтрованием воды через катиониты и аниониты.

В зависимости от вида и концентрации примесей в воде, требуемой эффективности очистки используют различные схемы ионообменных установок.

Умягчение воды катионированием. Умягчение воды катионированием - один из методов умягчения (обессоливания) воды.

Катионирование - процесс обработки воды методом ионного обмена, в результате которого происходит обмен катионов. В зависимости от вида ионов (Н+ или Na+), находящихся в объеме катионита, различают два вида катионирования: Н-катионирование и Na-катионирование.

Натрий-катионитовый метод применяют для умягчения воды с содержанием взвешенных веществ в воде не более 8 мг/л и цветностью воды не более 30 град. Жесткость воды снижается при одноступенчатом натрий-катионировании до значений 0,05 - 0,1 мг-экв/л, при двухступенчатом - до 0,01 мг-экв/л. Процесс Nа-катионирования описывается следующими реакциями обмена: Регенерация Na-катионита достигается фильтрованием через него со скоростью 3-4 м/ч 5-8% раствора NaCl (рис.1.2).

Рис.1.2. Схема одноступенчатого Натрий-катионирования воды.

Достоинства NaCl (поваренной соли) как регенерационного раствора: дешевизна; доступность.

Водород-катионитовый метод применяют для глубокого умягчения воды. Этот метод основан на фильтровании обрабатываемой воды через слой катионита, содержащего в качестве обменных ионов катионы водорода.

При Н-катионировании воды значительно снижается рН фильтрата за iет кислот, образующихся в ходе процесса. Углекислый газ, выделяющийся при реакциях умягчения, можно удалить дегазацией. Регенерация Н-катионита в этом случае производится 4 - 6% раствором кислоты (HCl, H2SO4). Иониты, в зернах которых при ионообменном процессе происходит обмен катионов, называют катионитами.

Энергия вхождения различных катионов в катионит по величине их динамической активности может быть охарактеризована для одинаковых условий следующим рядом: Na+<nh4+<k+<Мg2+<Са2+<А13+

Каждый катионит обладает определенной обменной емкостью выражающейся количеством катионов, которые катионит может обменять в течение фильтроцикла. Обменную емкость катионита измеряют в грамм-эквивалентных задержанных катионов на 1 м3 катионита, находящегося в набухшем (рабочем) состоянии после пребывания в воде, т. е. в таком состоянии, в котором катионит находится в фильтре. Различают полную и рабочую обменную емкость катионита. </nh4+<k+<Мg2+<Са2+<А13+

Полной обменной емкостью называют то количество катионов, которое может задержать 1 м3 катионита, находящегося в рабочем состоянии, до того момента, когда жесткость фильтрата сравнивается с жесткостью исходной воды.

Рабочей обменной емкостью катионита называют то количество катионов, которое задерживает 1 м3 катионита до момента проскока в фильтрат катионов. Рабочая обменная емкость катионита зависит от вида извлекаемых из воды катионов, cоотношения солей в умягчаемой воде, значения рН, высоты слоя катионита, скорости фильтрования, режима эксплуатации катионитовых фильтров, удельного расхода регенерирующего реагента и от других факторов. Обменную емкость, отнесенную ко вс?/p>