Ферромагнитные жидкости

Методическое пособие - Физика

Другие методички по предмету Физика

?й эллипсоид вращения и последующий ее разрыв легко объяснить теоретически, предполагая, что нормальная составляющая тензора электрических напряжений на поверхности капли уравновешена капиллярным давлением, возникающим вследствие неравномерности кривизны капли [168]. Этот же факт был установлен из энергетических соображений [169,170].

Если окружающая каплю среда электропроводна, то к силам поляризационного происхождения добавляются и кулоновские силы, действующие на накапливающиеся на межфазных границах гетерогенной среды свободные заряды [168]. При этом [171], на поверхности капли существует трансверсальное электрическое напряжение, которое генерирует течение внутри и вне капли. В этом случае теория [171] предсказывает образование как сплюснутых, так и вытянутых эллипсоидов в зависимости от отношения диэлектрических постоянных, удельных электрических сопротивлений и коэффициентов вязкости двух жидкостей, а также существование критических значений этих отношений, при которых капля остается сферической. Как показано в [172,173], в подобных ситуациях возможно явление отрицательной эффективной вязкости, колебательной электрогидродинамической неустойчивости .

Экспериментальное изучение деформации микрокапель, содержащихся в магнитных жидкостях проводилось с помощью наблюдений в оптический микроскоп. При этом, использовалась ячейка, представляющая собой предметное стекло, на поверхность которого наклеены две прямоугольные металлические пластины, в зазоре между торцами которых создавалось электрическое поле (подробное описание приведено в гл.2). Для создания однородного электрического поля на электроды подавалось напряжение от источника постоянного напряжения, однако, вследствие того, что наблюдения в постоянных полях связаны с большими трудностями из-за поляризации электродов и электрофоретической миграции структурных образований, исследования проведены в переменных полях в частотном диапазоне 20 Гц -20 кГц. Было установлено, что характер деформации микрокапельных агрегатов в электрическом поле существенно отличается от деформации капли магнитной жидкости, находящейся в глицерине, исследованной в [174]. Так, при низких частотах наблюдается не вытягивание агрегата в эллипсоид, что характерно для капли МЖ в глицерине или воде, а его сплющивание, т. е. ее трансформация в форму диска, плоскость которого перпендикулярна силовым линиям напряженности электрического поля. Оказалось, что в слабом электрическом поле (Е 100 кВ/м) в магнитных жидкостях с микрокапельной структурой возникают вихревые течения, приводящие к разрушению микрокапель.

 

Рис.32. Зависимости деформации микрокапельного агрегата а/b от напряженности переменного электрического поля Е при различных значениях частоты (l-f=0,6, 2-f=0,8, 3-f=l, 4-f=3, 5-f=5 кГц) (а) и От частоты этого поля f (б) при Е=30кВ/м.

 

Обсуждение обнаруженных явлений проведем на основе теоретического подхода, разработанного Цеберсом А.О. (изложенного в совместной работе [175]) при использовании основных идей работы [168].

Существенной особенностью стационарного поведения капли в электрическом поле по сравнению со случаем магнитного поля является наличие движения жидкости, определяющего ее форму. Оно возникает вследствие действия касательных электрических напряжений на межфазных границах, где накапливаются свободные заряды. По этой причине система уравнений, описывающая поведение капли в электрическом поле, включает уравнения и граничные условия электростатики, гидродинамики, а также закон сохранения заряда. В приближении ползучих течений она имеет вид (индексом "1" обозначены величины, относящиеся к области капли, "2" - к окружающей ее среде:

 

; ;

(4.46)

 

Граничные условия электростатики и гидродинамики на поверхности капли имеют следующий вид:

 

;

(4.47)

 

Здесь 1/Rk - средняя кривизна поверхности, 0 - поверхностное натяжение. - тензор электрических напряжений, а индексы "t" и "n" обозначают компоненты тангенциальные и нормальные к поверхности. Для замыкания системы (4.46) и (4.47) ее необходимо дополнить уравнением баланса поверхностного заряда, которое в общем случае имеет вид:

 

(4.48)

 

Первый член в правой части (4.48) представляет поверхностную дивергенцию конвективного тока, обусловленного переносом заряда движущейся жидкостью.

Плотность тока проводимости определяется законом Ома . Вдали от капли напряженность электрического поля равна напряженности внешнего поля, а скорость движения окружающей каплю жидкости равна нулю. В начальной области значений напряженности электрического поля, когда скорость индуцированного им движения мала, конвективным переносом заряда можно пренебречь. Тогда, в данном приближении система уравнений (4.46) - (4.47) для малых стационарных отклонений формы капли