Биоэлектрические явления
Контрольная работа - Биология
Другие контрольные работы по предмету Биология
остной мембране в физиологии известно очень давно, но только обнаруживали его другим способом - в виде так называемого тока покоя.
Ток покоя возникает в любой живой структуре между поврежденным ее участком и неповрежденной поверхностью.
Если перерезать нерв или мышцу, и один электрод приложить к поперечному разрезу, а другой - к поверхности, соединив их с гальванометром, то гальванометр покажет ток, который всегда течет от нормальной, неповрежденной поверхности к поперечному разрезу.
Ток покоя и мембранный потенциал - проявление одного и того же свойства мембраны; причина появления тока покоя заключается в том, что при повреждении клетки фактически возникает возможность соединить один электрод с внутренней стороной мембраны, а другой - с наружной ее поверхностью.
В идеальных условиях при повреждении должна была бы регистрироваться разность потенциалов = мембранному потенциалу. Этого, как правило, не происходит, т.к. часть тока не идет через гальванометр, а шунтируется по межклеточным пространствам, окружающей жидкости и т.п.
Величина трансмембранной разности потенциалов, которая может быть создана таким процессом, предсказывается уравнением Нернста:
Еm = ((R*T)/F)*ln([K]вн/[K]нар).
Еm = -59*ln([K]вн/[K]нар).
где R - газовая постоянная, T - абсолютная температура, F - число Фарадея, [K]вн:[K]нар - отношение концентрации калия внутри и снаружи клетки.
Концентрация калия снаружи - в межклеточной жидкости - примерно = таковой в крови. Внутриклеточную концентрацию можно примерно определить, пользуясь некоторыми аналитическими приемами либо измерениями с помощью калий-селективных электродов.
Ионы натрия в небольшом количестве проникают внутрь клетки и заряжают внутреннюю поверхность мембраны положительно, создавая встречную разность потенциалов. Хотя эта разность незначительна, она может снизить истинную величину мембранного потенциала [3;8].
Ионно-мембранная теория происхождения
Первые систематические исследования природы биопотенциалов и токов в 19 веке принадлежат немецкому электрофизиологу Э. Дюбуа-Реймону. Физико-химическую природу потенциала покоя впервые удалось научно объяснить ученику Дюбуа-Реймона Ю. Бернштейну, разработавшему в 1903-1911 г.г. мембранную теорию биопотенциалов. Но только в 50-х годах эта теория была экспериментально обоснована А.Л. Ходжкиным, которому принадлежат основные идеи и теории о роли ионных градиентов в возникновении биопотенциалов и о механизме распределения ионов между клеткой и средой.
Сущность этой теории заключается в том, что потенциал покоя и потенциал действия являются по своей природе мембранными потенциалами, обусловленными полупроницаемыми свойствами клеточной мембраны и неравномерным распределением ионов между клеткой и средой, которое поддерживается механизмами активного переноса, локализованными в самой мембране. Основные положения [11].
Электрические процессы возникают на плазматической мембране клетки, которая состоит из бимолекулярного слоя липидов (остов мембраны) и белков, которые выполняют различные функции в мембране: рецепторную, ферментативную, образуют в ней каналы и насосы.
Канал мембраны может быть неспецифическим, он постоянно открыт, не имеет воротного механизма, электрические воздействия не изменяют его состояния. Называют каналом утечки. Специфические каналы (селективные) имеют воротный механизм, поэтому могут находиться или в открытом, или в закрытом состоянии в зависимости от электрических воздействий на мембрану и пропускают только определенный ион. Этот канал состоит из трех частей:
. Водной поры - выстлана внутри гидрофильными группами;
. Селективного фильтра - на наружной поверхности, который пропускает ионы в зависимости от их размера и формы;
. Ворот - на внутренней поверхности мембраны, управляют проницаемостью канала.
Каналы для натрия имеют два типа ворот: быстрые активационные и медленные инактивационные. В покое открыты медленные инактивационные и закрыты быстрые активационные. При возбуждении происходит открытие быстрых активационных и медленное закрытие медленных инактивационных, т.е. на короткий промежуток времени оба типа ворот открыты.
Калиевые каналы имеют только медленные ворота.
Насосы выполняют функцию транспорта через мембрану ионов против градиента концентрации, для их работы используется энергия АТФ. По обе стороны мембраны существует концентрационный градиент.
Внутри клетки в 40 раз больше ионов калия, тогда как вне клетки в 20-30 раз больше ионов натрия и в 50 раз больше ионов хлора.
Мембрана пропускает молекулы жирорастворимых веществ, а анионы органических кислот не проходят. Мембрана проницаема для воды, для ионов проницаемость мембраны различна: для калия в состоянии покоя проницаемость почти в 25 раз больше, чем для натрия. При возбуждении увеличивается проницаемость и для калия (постепенно), и для натрия (быстро, но на очень короткий промежуток времени) [8].
.3 Ионный механизм возбуждения; Потенциал действия, его компоненты. Изменение возбудимости при возбуждении
Ионный механизм возбуждения
В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается за счет активации натриевых каналов.
При этом ионы Na+ по концентрационному градиенту интенсивно перемещаются извне