Биохимия спорта
Контрольная работа - Биология
Другие контрольные работы по предмету Биология
?вижущую силу процессу сокращения. Актин способен взаимодействовать с миозином, образуя актомиозиновый комплекс. Молярное соотношение актина и миозина в актомиозиновом комплексе - примерно 1:1. Нить F-актина может связывать большое число молекул миозина. Существенным свойством актомиозинового комплекса является диссоциация его в присутствии АТФ и Мg2+.
Рис. 3. Схема строения актиновой, или тонкой нити
В состав тонких нитей наряду с актином входят и другие минорные белки - тропомиозин, тропонины, актинины.
Тропомиозин (Тм) - это структурный белок актиновой нити, представляющий собой вытянутую в виде тяжа молекулу. Две его полипептидные цепи как бы обвивают актиновые нити. На концах каждой молекулы тропомиозина расположены белки тропониновой системы, наличие которой характерно только для поперечно-полосатых мышц.
Тропонин (Тн) является регуляторным белком актиновой нити. Он состоит из трех субъединиц - ТнТ, ТнI и ТнС. Тропонин Т(ТнТ) обеспечивает связывание этих белков с тропомиозином. Тропонин I (ТнI) блокирует (ингибирует) взаимодействие актина с миозином. Тропонин С (ТнС) - это Са2+-связывающий белок, структура и функции которого подобны широко распространенному в природе белку кальмодулину. Тропонин С, как и кальмодулин, связывает четыре иона Са2+ на молекулу белка и имеет молекулярную массу 17 000. В присутствии Са2+ изменяется конформация тропонина С, что приводит к изменению положения Тн по отношению к актину, в результате чего открывается центр взаимодействия актина с миозином.
Таким образом, тонкий филамент миофибриллы поперечно-полосатой мышцы состоит из F-актина, тропомиозина и трех тропониновых компонентов - ТнС, ТнI и ТнТ. Кроме этих белков, в мышечном сокращении участвует белок актинин. Обнаруживается он в зоне Z-линии, к которой крепятся концы F-актиновых молекул тонких нитей миофибрилл. Белки мышечной стромы в скелетной мышце представлены в основном коллагеном и эластином, которые входят в состав сарколеммы и Z-линий миофибрилл. Эти белки обладают эластичностью, большой упругостью, что имеет существенное значение для процесса сокращения и расслабления мышцы.
. Аэробная работоспособность, ее биохимические факторы
Аэробный механизм ресинтеза АТФ в обычных условиях обеспечивает около 90 % общего количества АТФ, ресинтезируемой в организме. Ферментные системы аэробного обмена расположены в основном в митохондриях мышц. Механизм аэробного окисления питательных веществ носит название окислительное фосфорилирование.
В качестве субстратов аэробного окисления используются глюкоза, высшие жирные кислоты, отдельные аминокислоты, кетоновые тела, молочная кислота и другие недоокисленные продукты метаболизма. Все эти вещества постепенно превращаются в единое вещество - ацетил-КоА, который далее окисляется в цикле лимонной кислоты до конечных продуктов СО2 и Н2О с участием многочисленных окислительных ферментов и вдыхаемого кислорода, доставляемого к тканям гемоглобином эритроцитов крови, а в скелетных мышцах - с участием кислорода, накапливаемого белком миоглобина. Энергия окисления накапливается в восстановленной форме переносчиков водорода НАДН2 и ФАДН2, которые передают высокоэнергетические электроны по дыхательной цепи на вдыхаемый кислород, а протоны водорода создают на мембране митохондрий протонный градиент, который является движущей силой для генерирования АТФ в процессе окислительного фосфорилирования. Когда разница протонного градиента достигает определенной величины (200 мВ), протоны движутся через мембрану митохондрий и взаимодействуют с кислородом с образованием Н2О.
При потреблении одинакового количества кислорода объем выполненной работы будет большим в том случае, если энергетическим субстратом будут углеводы, а не жиры. Углеводы являются более эффективным "топливом" по сравнению с жирами, так как на их окисление требуется на 12 % меньше кислорода в расчете на молекулу синтезированной АТФ. Поэтому в условиях недопоступления кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов.
Поскольку запасы углеводов в организме ограничены, ограничена и возможность их использования в видах спорта, требующих проявления общей выносливости. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнять очень длительную работу. Так, в марафонском беге за счет использования мышечного гликогена работа мышц продолжается в течение 80 мин. Часть АТФ может быть получена за счет мобилизации гликогена печени. Следовательно, за счет углеводов можно обеспечить энергией 75 % марафонской дистанции. Остальное количество энергии образуется за счет окисления жирных кислот. Учитывая, что жирные кислоты содержат большое количество энергии, весьма важно развивать способность организма спортсмена к более ранней их мобилизации для энергообеспечения работы. Для этого рекомендуется периодически использовать в тренировке аэробные нагрузки - бег на сверхдлинные дистанции (по 30-40 км и более).
В качестве субстрата окисления могут использоваться и белки-, которые распадаются на аминокислоты, способные превращаться в глюкоз или другие метаболиты аэробного процесса окисления. Однако вклад белков в образование энергии при мышечной деятельности составляет всего 5-10%.
Максимальная мощность аэробного механизма наименьшая и составляет 1,2 кДж•кг-1•мин-1 и в равной степени ?/p>