Усилитель генератора с емкостным выходом

Реферат - Радиоэлектроника

Другие рефераты по предмету Радиоэлектроника

ктор-эмиттер, равном 10 В,

Lэ=0.35 нГн, индуктивность эмиттерного выхода,

Lб=1 нГн, индуктивность базового вывода.

2.3.2. Расчет эквивалентных схем транзистора 2Т 916А

 

В данном пункте рассчитаем две эквивалентные схемы замещения транзистора: низкочастотную модель Джиаколетто [2] и высокочастотную однонаправленную модель [2]. Полученные эквивалентные параметры найдут применение в последующих расчетах.

а) Модель Джиаколетто

Модель Джиаколетто представлена на рисунке 2.5.

Рисунок 2.5 - Эквивалентная схема Джиаколетто.

 

Для расчета используем справочные данные, выписанные выше [1]. Пересчитаем емкость коллекторного перехода на напряжение 10 В:

, емкость коллекторного перехода, рассчитанная при том же напряжении, что и постоянная времени цепи обратной связи.

Элементы схемы рассчитываются по формулам [2]:

, (2.9)

,

, (2.10)

, (2.11)

,

, (2.12)

, (2.13)

, (2.14)

.

б) Однонаправленная модель

Однонаправленная модель представлена на рисунке 2.6 данного пункта.

Рисунок 2.6 - Однонаправленная модель.

Элементы модели рассчитываются на основе справочных данных по формулам [2]:

, (2.15)

. (2.16)

 

2.3.3 Расчет схем термостабилизации

 

В этом пункте производится сравнение эффективности использования различных схем термостабилизации транзистора выходного каскада: эмиттерной и активной коллекторной. Схема термостабилизации поддерживает значение постоянного тока, текущего через транзистор, на определенном, неизменном уровне при изменении внешних факторов (температура). Схема эмиттерной термостабилизации приведена на рисунке 2.7.

Рисунок 2.7 Схема эмиттерной термостабилизации.

Расчет номиналов элементов осуществляется по известной методике, исходя из заданной рабочей точки. На эмиттере должно падать напряжение не менее 3-5 В, чтобы стабилизация была эффективной. Рабочая точка:

Uкэ0= 16.5В,

Iк0=0.31А.

Номинал резистора Rэ находится по закону Ома:

. (2.17)

Емкость СЭ обеспечивает беспрепятственное прохождение высокочастотной составляющей эмиттерного тока. Рассчитывается по формуле:

. (2.18)

Тогда .

Мощность, рассеиваемая на резисторе RЭ:

. (2.19)

Видно, что рассеиваемая мощность значительна. Это является определенным недостатком, т.к. создает дополнительные сложности при практическом исполнении устройства.

Энергетический расчет производится по формулам:

. (2.20)

Номиналы резисторов делителя рассчитываются по формулам:

. (2.21)

Расчет схемы эмиттерной термостабилизации закончен.

Схема активной коллекторной термостабилизации усилительного каскада приведена на рисунке 2.8.

Рисунок 2.8 Схема активной коллекторной термостабилизации.

В качестве управляемого активного сопротивления выбран маломощный транзистор КТ 316А со средним коэффициентом передачи тока базы 50. Напряжение на сопротивлении цепи коллектора по постоянному току должно быть больше 1 В, в данной схеме оно принято за 1.24 В.

Энергетический расчет схемы производится по формулам [2]:

. (2.22)

Мощность, рассеиваемая на сопротивлении коллектора:

. (2.23)

Видно, что мощность рассеивания на отдельном резисторе уменьшилась почти в три раза по сравнению с предыдущей схемой.

Рассчитаем номиналы схемы [2]:

. (2.24)

Номиналы реактивных элементов рассчитываются по формулам:

(2.25)

Этим требованиям удовлетворяют следующие номиналы:

Сравнивая две схемы видно, что более эффективно использовать активную коллекторную термостабилизацию, и с энергетической, и с практической точек зрения. Поэтому далее в принципиальной электрической схеме усилителя будет использоваться активная коллекторная схема термостабилизации.

2.3.4. Расчет выходной корректирующей цепи

Схема оконечного каскада с высокочастотной индуктивной коррекцией приведена на рисунке 2.9.

Рисунок 2.9 Схема выходной корректирующей цепи.

От выходного каскада усилителя требуется получение максимально возможной выходной мощности в заданной полосе частот [1]. Это достигается путем реализации ощущаемого сопротивления нагрузки для внутреннего генератора транзистора равным постоянной величине во всем рабочем диапазоне частот. Одна из возможных реализаций - включение выходной емкости транзистора в фильтр нижних частот, используемый в качестве выходной КЦ. Расчет элементов КЦ проводится по методике Фано, обеспечивающей максимальное согласование в требуемой полосе частот.

По имеющейся выходной емкости каскада (вычисленной в пункте 2.3.2) найдем параметр b3, чтобы применить таблицу коэффициентов [1]:

. (2.26)

Требуемые параметры из таблицы коэффициентов [1] с учетом величины b3:

C1н=b1=1.2, L1н=b2=0.944, 1.238.

Разно