Технология извлечения знаний из нейронных сетей: апробация, проектирование ПО, использование в психо...
Реферат - Компьютеры, программирование
Другие рефераты по предмету Компьютеры, программирование
t of Approximately Correct Domain Theories by Knowledge-based Neural Networks / Proc. AAAI90, Boston, MA, USA, 1990. - pp.861-866.
Публикации автора по теме диплома
- Горбань П.А. Нейросетевой анализ структуры индивидуального пространства смыслов. "Нейрокомпьютеры": разработка, применение. 2002, No 4. С. 14-19.
- Горбань П.А., Царегородцев В.Г. Как определить одни признаки, существенные для исходов президентских выборов в США, через другие? (пример применения нейросетевой технологии анализа связей) // Тезисы VI международной конференции "Математика. Компьютер. Образование". (25-30 января 1999 г. в г.Пущино). (Электронная версия:
- Gorban P.A. Relations between Social, Economic and Political Traits of USA Political Situation. Abstract: USA-NIS Neurocomputing Opportunities Workshop, Washington, DC, July 12-17, 1999.
- Горбань П.А. Демонстрация возможностей нейроимитатора NeuroPro 1.0 на примере выборов американских президентов. Материалы 6 Всероссийского семинара "Нейроинформатика и ее приложения" (2-4 октября 1998 г., Красноярск). Красноярск, изд. КГТУ. С. 43.
- Горбань П.А. Нейросетевой анализ структуры индивидуального пространства смыслов Материалы 7 Всероссийского семинара "Нейроинформатика и ее приложения" (1-3 октября 1999 г., Красноярск). Красноярск, изд. КГТУ. С. 34-36.
- Горбань П.А. Нейросетевая реализация метода семантического дифференциала и анализ выборов американских президентов, основанный на технологии производства явных знаний из данных // Материалы 37 Международной конференции "Студент и научно-технический прогресс" (Новосибирск, апрель 1999). Новосибирск: изд. НГУ, 1999. С. 43.
Благодарности
Автор благодарен своему научному руководителю, всем сотрудника группы "Нейрокомп" и, в особенности, В.Г. Царегородцеву за внимание к работе, поддержку и разрешение использовать результаты совместных работ в дипломе. Я существенно использовал в дипломной работе описание программы НейроПро (В.Г. Царегородцев), технический отчет с обзором экспертных систем (А. Батуро), а также лекции проф. А.Н. Горбаня по нейронным сетям.
Приложение 1. Плакаты для защиты диплома.
ТЕХНОЛОГИЯ ИЗВЛЕЧЕНИЯ ЗНАНИЙ ИЗ НЕЙРОННЫХ СЕТЕЙ:
- АПРОБАЦИЯ,
- ПРОЕКТИРОВАНИЕ ПО,
- ИСПОЛЬЗОВАНИЕ В ПСИХОЛИНГВИСТИКЕ
ЦЕЛЬ РАБОТЫ
- апробация гибкой технологии извлечения знаний из нейронных сетей, настраиваемой с учетом предпочтений пользователя;
- тестирование, пробная эксплуатация и разработка новой версии программных средств, реализующих данную технологию;
- проведение исследований индивидуальных пространств смыслов на основе данной технологии.
ОСНОВНЫЕ ЗАДАЧИ РАБОТЫ
- анализ разработанных методов извлечения явных знаний из нейронных сетей с указанием их ограничений и областей применимости;
- апробация гибкой настраиваемой на основе предпочтений пользователя технологии извлечения знаний, опирающейся на предварительное проведение комплексного упрощения нейронной сети, выполняющегося с учетом сформированных пользователем требований к результирующему виду извлекаемых знаний;
- тестирование, пробная эксплуатация и разработка новой версии программных средств, реализующих данную технологию;
- усовершенствование метода семантического дифференциала Осгуда при помощи технологии разреживания обучаемых нейронных сетей.
НЕЙРОНЫ, СЕТИ, ОБУЧЕНИЕ
Формальный нейрон
Слоистая сеть
ОБУЧЕНИЕ МИНИМИЗАЦИЯ ОШИБКИ НА ПРИМЕРАХ С ИЗВЕСТНЫМ ОТВЕТОМ
МЕТОДЫ (АЛГОРИТМЫ)
ОБРАТНОГО РАСПРОСТРАНЕНИЯ
Вычисление сложной функции многих переменных пред?/p>