Технологические процессы машиностроительного производства
Контрольная работа - Разное
Другие контрольные работы по предмету Разное
Федеральное агентство по образованию
ГОУ ВПО Уральский государственный экономический университет
Кафедра инженерных дисциплин
Контрольная работа
Технологические процессы машиностроительного производства
Исполнитель: студентка II курса заочного факультета
специальности ЭПП
Добрынкина Л. В.
Екатеринбург 2010
Термическая обработка металлов и сплавов
Процесс тепловой обработки металлов и сплавов в целях придания им заданной структуры и свойств называется термической обработкой.
Различают собственно термическую обработку, химико-термическую и термомеханическую.
1.Собственно термической обработкой металлов и сплавов называется процесс изменения их внутреннего строения (структуры) путем нагрева, выдержки и последующего охлаждения в целях получения необходимых физико-механических свойств этих материалов. Ее основными видами являются отжиг, закалка и отпуск.
2.Химико-термическая обработка представляет собой насыщение поверхности металла элементами, повышающими твердость, износостойкость, коррозионную стойкость. Этот процесс требует повышенных температур и длительных выдержек. К наиболее распространенным методам химико-термической обработки стали относятся: цементация (насыщение углеродом),, азотирование (насыщение азотом), цианирование (одновременное насыщение углеродом и азотом), диффузионная металлизация, или поверхностное легирование. Последний метод в зависимости от насыщающего элемента подразделяют на хромирование, алитирование, силицирование (насыщение соответственно хромом, алюминием, кремнием) и др.
.Термомеханическая обработка - новый метод обработки металлов, позволяющий повысить механические свойства по сравнению с получаемыми обычной закалкой и отпуском. Она заключается в сочетании пластической деформации с термообработкой.
Рассмотрим основные виды собственно термической обработки сталей, отличающиеся друг от друга режимами термообработки, т. е. температурой нагрева, выдержкой при этой температуре и скоростью охлаждения.
Изменение внутренней структуры стали в процессе нагревания при различных видах термообработки зависит от содержания в ней углерода. Поэтому выбор температуры нагрева производят по специальной диаграмме, которая является частью более полной диаграммы состояния железоуглеродистых сплавов. По горизонтальной оси на ней указано содержание углерода в процентах, а по вертикальной - температура нагрева стали в градусах Цельсия. Заштрихованные участки диаграммы показывают оптимальные температурные интервалы нагрева стали при различных видах термообработки.
Термическую обработку стальных деталей проводят в тех случаях, когда необходимо либо повысить прочность, твердость, износоустойчивость или упругость детали или инструмента, либо, наоборот, сделать металл более мягким, легче поддающимся механической обработке. В зависимости от температур нагрева и способа последующего охлаждения различают следующие виды термической обработки: закалка, отпуск и отжиг. В любительской практике для определения температуры раскаленной детали по цвету можно использовать приведенную таблицу.
Цвет каления: сталиТемпература нагрева 0СТемно-коричневый (заметен в темноте)530-580Коричнево-красный580-650Темно-красный650-730Темно-вишнево-красный730-770Вишнево-красный770-800Светло-вишнево-красный800-830Светло-красный830-900Оранжевый900-1050Темно-желтый1050-1150Светло-желтый1150-1250Ярко-белый1250-1350
Закалка стальных деталей
Закалка придает стальной детали большую твердость и износоустойчивость. Для этого деталь нагревают до определенной температуры, выдерживают некоторое время, чтобы весь объем материала прогрелся, а затем быстро охлаждают в масле (конструкционные и инструментальные стали) или воде (углеродистые стали). Обычно детали из конструкционных сталей нагревают до 880-900 С (цвет каления светло-красный), из инструментальных-до 750-760 С (цвет темно-вишнево-красный), а из нержавеющей стали-до 1050-1100 С (цвет темно-желтый). Нагревают детали вначале медленно (примерно до 500 С), а затем быстро. Это необходимо для того, чтобы в детали не возникли внутренние напряжения, что может привести к появлению трещин и деформации материала. В ремонтной практике применяют в основном охлаждение в одной среде (масле или воде), оставляя в ней деталь до полного остывания. Однако этот способ охлаждения непригоден для деталей сложной формы, в которых при таком охлаждении возникают большие внутренние напряжения. Детали сложной формы сначала охлаждают в воде до 300-400 С, а затем быстро переносят в масло, где и оставляют до полного охлаждения. Время пребывания детали в воде определяют из расчета: 1 с на каждые 5-6 мм сечения детали. В каждом отдельном случае это время подбирают опытным путем в зависимости от формы и массы детали. Качество закалки в значительной степени зависит от количества охлаждающей жидкости. Важно, чтобы в процессе охлаждения детали температура охлаждающей жидкости оставалась почти неизменной, а для этого масса ее должна быть в 30-50 раз больше массы закаливаемой детали. Кроме того, перед погружением раскаленной детали жидкость необходимо тщательно перемешать, чтобы выровнять ее температуру по всему объему. В процессе охлаждения вокруг детали образуется слой