Техническое обеспечение компьютерных сетей

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

ем комплексного сигнала разностной частоты на основе преобразования Гильберта и синтезом комплексного компенсирующего сигнала на основе данных ЛЧМ зондирования ионосферы.

Методики численного определения: частотной зависимости задержки сигнала в среде при вертикальном падении на основе дискретных данных об электронной концентрации и использования метода решения обратной коэффициентной задачи функционального анализа; спектров разностного сигнала в зависимости от средних частот выборочных элементов зондирующего ЛЧМ сигнала.

Установленный эффект уменьшения влияния дисперсионных искажений широкополосных элементов ЛЧМ сигнала из-за просачивания их высокочастотных спектральных составляющих в окрестности максимума слоя.

Алгоритмы обработки широкополосных элементов ЛЧМ сигнала со сверхбольшой базой для исследования дисперсного распространения и влияния компенсации частотной дисперсности фазы.

Закономерности: дисперсионных искажений элементов ЛЧМ сигнала от характеристик сигнала и среды распространения (ионосферы); поведения времени устойчивости компенсации фазовой дисперсности от относительной средней частоты элемента ЛЧМ сигнала, от порядка луча ионосферного распространения и от протяженности трассы.

Научная новизна работы

. Разработаны новые методики: определения частотной зависимости задержки сигнала в ионосфере с применением для зондирования последовательности элементов ЛЧМ сигнала с различными средними частотами спектра; дисперсионных искажений широкополосных элементов ЛЧМ сигнала при изменении их длительности сверх критической; компенсации эффекта фазовой дисперсности в ЛЧМ сигналах с различной средней частотой спектра, отличающейся формированием комплексного сигнала разностной частоты на основе преобразования Гильберта и синтезом комплексного компенсирующего сигнала на основе данных ЛЧМ зондирования ионосферы.

. Разработаны новые методики численного определения: частотной зависимости задержки сигнала в среде при вертикальном падении на основе дискретных данных об электронной концентрации и использования метода решения обратной коэффициентной задачи функционального анализа; спектров разностного сигнала в зависимости от средних частот выборочных элементов зондирующего ЛЧМ сигнала.

. Впервые выявлен эффект уменьшения влияния дисперсионных искажений широкополосных элементов ЛЧМ сигнала из-за просачивания их высокочастотных спектральных составляющих в окрестности максимума слоя.

. Впервые представлены закономерности: дисперсионных искажений элементов ЛЧМ сигнала от характеристик сигнала и среды распространения (ионосферы); поведения времени устойчивости компенсации фазовой дисперсности от относительной средней частоты элемента ЛЧМ сигнала, от порядка луча ионосферного распространения и от протяженности трассы.

1. Основные понятия

сеть радиосигнал спектр ионосфера

Среда передачи данных - физическая среда, по которой происходит передача сигналов, использующихся для представления информации

Радиоволны - электромагнитные волны с частотой меньше 6000 ГГц (с длиной волны больше 100 мкм).

Протокол передачи данных - набор соглашений интерфейса логического уровня, которые определяют обмен данными между различными программами. Эти соглашения задают единообразный способ передачи сообщений и обработки ошибок при взаимодействии программного обеспечения разнесённой в пространстве аппаратуры, соединённой тем или иным интерфейсом

Естественная среда - это среда, изначально существующая в природе. Примерами естественных сред могут выступать атмосфера Земли, безвоздушное пространство, электромагнитное поле Земли, вода, грунт и т.д.

Воздушное пространство - в основном используется для передачи радиоволн.

Безвоздушное пространство - позволяет распространяться электромагнитному, световому, рентгеновскому и другим видам излучений.

 

2. Воздушное пространство

 

Атмосфера

Наибольшее распространение в качестве носителей данных в атмосфере получили электромагнитные волны. Здесь следует заметить, что от длины волны зависит характер распространения электромагнитных волн в атмосфере. Спектр электромагнитного излучения делится на радиоизлучение, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение, гамма-излучение. В настоящее время в связи с техническими трудностями ультрафиолетовое, рентгеновское и гамма-излучение не используются, используются радиоволны.

Радиоволны

Волны, имеющую длину больше, чем у ультракоротковолновых, не представляют большого интереса для сети передачи данных из-за низкой потенциальной скорости передачи данных

В сетях передачи данных нашли применения радиоволны УКВ диапазона, которые распространяются прямолинейно и не отражаются ионосферой и не огибая встречающиеся препятствия . Поэтому связь в сетях передачи данных, построенных на УКВ радиосредствах, ограничена по расстоянию (до 40 км). Для преодоления этого ограничения обычно используют ретрансляторы.

Разработчику радиосети приходится, в первую очередь, заниматься юридическими проблемами. Это объясняется тем, что любая передающая радиостанция, превышающая ограничение на выходную мощность, подлежит лицензированию. Национальными комитетами по лицензированию (или государственными органами, занимающимися лицензированием), как правило, выделяются частоты, не подлежащ?/p>