Термодинаміка і синергетика

Дипломная работа - Физика

Другие дипломы по предмету Физика

шій частині системи, є забороненим процесом . З такого формулювання витікає, що в будь-якій макроскопічній ділянці системи приріст ентропії, обумовлений перебігом необоротних процесів, є позитивним. Під поняттям макроскопічна ділянка системи мається на увазі будь-яка ділянка системи, в якій міститься достатнє велике число молекул, щоб можна було нехтувати мікроскопічними флуктуакціями. Взаємодія необоротних процесів можлива лише тоді, коли ці процеси відбуваються в тих же самих ділянках системи .

Таке формулювання другого закону можна було б назвати локальною формулювання в протилежність глобальною формулювання класичної термодинаміки . Значення подібному новому формулюванню полягає в тому,что на її основі можливий набагато глибший аналіз необоротних процесів.

 

1.5 ТРЕТІЙ ПОЧАТОК ТЕРМОДИНАМІКИ

 

Відкриття третього початку термодинаміки повязане із знаходженням хімічного засобу - величини, що характеризують здатність різних речовин хімічно реагувати один з одним . Ця величина визначається роботою W хімічних сил при реакції . Перший і другий початок термодинаміки дозволяють обчислити хімічний засіб W тільки з точністю до деякої невизначеної функції . Щоб визначити цю функцію потрібні в доповненні до обох початків термодинаміки нові досвідчені дані про властивості тіл . Тому Нернстоном були зроблені широкі експериментальні дослідження поведінка речовин при низькій температурі.

В результаті цих досліджень і було сформульовано третій початок термодинаміки : у міру наближення температури до 0 До ентропія всякої рівноважної системи при ізотермічних процесах перестає зависить від яких-небудь термодинамічних параметрів стану і в межі ( Т= 0 До) приймає одну і тугіше для всіх систем універсальну постійну величину, яку можна прийняти рівною нулю .

Спільність цього твердження полягає в тому, що, по-перше, воно відноситься до будь-якої рівноважної системи і, по-друге, що при Т прагнучому до 0 До ентропія не залежить від значення будь-якого параметра системи. Таким чином по третьому початку

 

lim [ S (T,X2) - S (T,X1) ] = 0 (1.12)

або

lim [ dS/dX ]T = 0 при Т 0 (1.13)

 

де Х - будь-який термодинамічний параметр (аi або Аi).

Граничне значення ентропії, оскільки воно одне і теж для всіх систем, не має ніякого фізичного сенсу і тому вважається рівним нулю (постулат Планка). Як показує статичний розгляд цього питання, ентропія по своїй істоті визначена з точністю до деякої постійної (подібно, наприклад, електростатичному потенціалу системи зарядів в якій або точці поля). Таким чином, немає сенсу вводити якусь абсолютну ентропію, як це робив Планк і деякі інші учені.

РОЗДІЛ 2. ОСНОВНІ ПОНЯТТЯ І ПОЛОЖЕННЯ СИНЕРГЕТИКИ. САМООРГАНІЗАЦІЯ РІЗНИХ СИСТЕМ

 

Близько 50 років тому в результаті розвитку термодинаміки виникла нова дисципліна - синергетика.

Великим є значення цієї науки.

Синергетика займається вивченням систем, що складаються з багатьох підсистем самої різної природи, таких, як електрони, атоми, молекули, клітки, нейтрони, механічні елементи, фотони, органи, тварини і навіть люди.

При виборі математичного апарату необхідно мати зважаючи на, що він повинен бути застосовний до проблем, з якими стикаються фізик, хімік, біолог, електротехнік і інженер механік. Не менш безвідмовний він повинен діяти і в області економіки, екології і соціології.

У всіх цих випадках нам доведеться розглядати системи, що складаються з дуже великого числа підсистем, щодо яких ми можемо не мати в своєму розпорядженні всієї повної інформації.

Для опису таких систем не рідко використовують підходи, засновані на термодинаміки і теорії інформації.

У всіх системах, що представляють інтерес для синергетики, вирішальну роль грає динаміка. Як і які макроскопічні стани утворюються, визначаються швидкістю росту (або розпаду) колективних мод.

Можна сказати що в певному значенні ми приходимо до свого роду узагальненому дарвенізму, дія якого розпізнається не тільки на органічний,но і на неорганічний світ : виникнення макроскопічних структур обумовлених народженням колективних мод під впливом флуктуацій, їх конкуренцією і, нарешті, відбором найбільш пристосованої моди або комбінації таких мод.

Ясно, що вирішальну роль грає параметр час.

Отже, ми повинні досліджувати еволюцію систем в часі. Саме тому рівняння, що цікавлять нас, іноді називають еволюційними.

2.1 ЗАГАЛЬНА ХАРАКТЕРИСТИКА ВІДКРИТИХ СИСТЕМ

 

Відкриті системи - це термодинамічні системи, які обмінюються з навколишніми тілами ( середовищем ), речовиною, енергією і імпульсом . Якщо відхилення відкритої системи від стану рівноваги невелике, то нерівно важний стан можна описати тими ж параметрами (температура, хімічний потенціал та інші), що і рівноважне . Проте відхилення параметрів від рівноважних значень викликають потоки речовини і енергії в системі . Такі процеси перенесення приводять до виробництва ентропії . Прикладами відкритих систем є : біологічні системи, включаючи клітку, системи обробки інформації в кібернетиці, системи енергопостачання та інші . Для підтримки життя в системах від клітки до людини необхідний постійний обмін енергією і речовиною з навколишнім середовищем . Отже живі організми є системами відкритими, аналогічно і з іншими приведеними параметрами. Прігожіним в 1945 році був сформульований розширений варіант термодинаміки.

У відкритій системі зміну ентропії мож