Термодинамические характеристики расплавов на основе железа

Реферат - Экономика

Другие рефераты по предмету Экономика

1 ТЕРМОДИНАМИКА РАСТВОРОВ

 

1.1 Основные понятия

 

1.1.1 Энтальпия.

Величина равная (E+PV) , часто встречается в термодинамических расчетах процессов, происходящих в системах при постоянном давлении; её обозначают через Н и называют энтальпией и иногда теплосодержанием.

Таким образом,

,

где Е внутренняя энергия системы;

Р давление в системе;

V объем.

Из определения энтальпии следует, что она, подобно энергии, является функцией состояния системы, так как она выражена через энергию (функцию состояния) и переменные состояния P и V. Следовательно, изменение энтальпии для любого термодинамического цикла (циклического процесса) равно нулю.

Если процесс не циклический, то при постоянном давлении изменение энтальпии системы равно полученной ею (системой) теплоте:

.

Таким образом, для изобарического процесса обмениваемая между системой и внешней средой теплота представляет разность между начальной и конечной энтальпией самой системы и не зависим от пути достижения конечного состояния системы. Этот вывод следует из уравнения (2) и первоначально установленного факта, что энтальпия системы является функцией только её состояния. Следует подчеркнуть, что уравнение (2) применимо только к системе при постоянном давлении, так как теплота q вообще является не только функцией начального и конечного состояний, но зависит также от пути процесса. [2]

1.1.2 Энтропия.

Пусть две системы с термодинамическими вероятностями W1 и W2 образуют одну сложную систему, для которой термодинамическая вероятность W1+2. Так как каждый способ, которым осуществляется состояние первой системы, может сочетаться со всеми способами осуществления второй системы, то общее число способов, которыми может быть осуществлена сложная система, составляет:

Это свойство мультипликативности делает функцию W неудобной для непосредственных расчетов. [1]

Характеризовать в этом смысле состояние системы оказалось удобнее не самой вероятностью осуществления данного макросостояния, а величиной, пропорциональной её логарифму. Эта величина называется энтропией. Энтропия (S) связана с числом (W) равновероятных микроскопических состояний, которыми можно реализовать данное макроскопическое состояние системы, уравнением:

где k коэффициент пропорциональности

Наименьшую энтропию имеют идеально правильно построенные кристаллы при абсолютном нуле. Энтропия кристалла, в структуре которого имеются какие-либо неправильности, уже при абсолютном нуле в несколько раз больше, так как нарушения идеальности могут реализоваться не единственным способом. С повышением температуры энтропия всегда возрастает, так как возрастет число способов их расположения. Возрастает она также при превращении вещества из кристаллического состояния в жидкое и, в особенности, при переходе из жидкого состояния в газообразное. Изменяется энтропия и при протекании химических процессов. Эти изменения обычно особенно велики в случае реакций, приводящих к изменению числа молекул газов: увеличение числа газовых молекул приводит к возрастанию энтропии, уменьшение к её понижению. [4]

Изменение энтропии при различных процессах. Энтропия это функция, дифференциал которой равен . Из определительного соотношения:

,

где - приращение теплоты, следует, что для любого обратимого процесса, протекающего при постоянной температуре, изменение энтропии системы:

.

Для процессов, протекающих при постоянных давлении и температуре, имеем:

.

Для термодинамического вещества, нагретого и охлажденного при постоянном давлении,

,

где СР - теплоемкость вещества при постоянном давлении; и, следовательно,

Точно также при нагреве и охлаждении вещества при постоянном объеме имеем: [2]

 

Если система изолирована от окружающей среды, то и, следовательно, . Протекание любого самопроизвольного процесса характеризуется неравенством:

.

Следовательно, в замкнутой системе такие процессы сопровождаются увеличением энтропии. При равновесии энтропия замкнутой системы остается постоянной. [1]

 

1.1.3 Энергия Гиббса.

Термодинамические характеристики реакций включают значения тепловых эффектов и величины - стандартного изменения свободной энергии для соответствующих реакций. [5]

Изменение энергии Гиббса системы является основной термодинамической характеристикой химической реакции. Для определенности исходные вещества и продукты реакции принимают обычно находящимися в их стандартных состояниях. Соответствующую величину и называют стандартной энергией Гиббса химической реакции . [6]

Зависимость от различных реакций от температуры с достаточной точностью выражается формулой:

Коэффициенты М и Nдля различных реакций приведены в справочной литературе. Эти коэффициенты определяются на основе обобщения экспериментальных данных по равновесиям различных реакций. Величины M и N близки к средним значениям тепловых эффектов () и изменения энтропии () для соответствующих реакций: [5]

.

В некоторых справочных изданиях приведены не энергии Гиббса веществ GT , а приведенные энергии Гиббса ФТ , которые связаны с GT соотношением: .

 

Для энергии Гиббса реакции aA+bB=cC+dD , как и для некоторых других величин, применимо выражение:

Согласно второму закону терм