Термодинамические основы термоупругости

Курсовой проект - Физика

Другие курсовые по предмету Физика

2)

 

, (2.2.3)

 

, (2.2.4)

 

, (2.2.5)

 

, (2.2.6)

 

. (2.2.7)

 

Система исходных уравнений в обязательном порядке включает основные общие для всех сплошных сред дифференциальные уравнения механики, выражающие фундаментальные законы сохранения массы (2.2.1), импульса (2.2.2), энергии (2.2.3), а также общие для всех сред кинематические соотношения (2.2.4) и (2.2.5) и геометрические соотношения (2.2.6). Индивидуальные особенности рассматриваемой деформируемой среды в отношении оказания сопротивления деформированию учитываются физическими соотношениями (2.2.7), обязательно включаемыми в систему исходных уравнений согласно выбранной модели сплошной среды.

В зависимости от конкретного вида физических соотношений (2.2.7) и от характера процесса деформирования среды в систему исходных уравнений для обеспечения ее замкнутости могут быть включены дополнительные уравнения и соотношения. Например, при отсутствии влияния температуры на физико-механическое поведение рассматриваемой среды физические соотношения имеют вид и для адиабатического процесса система уравнений (2.2.1)(2.2.7) является замкнутой и содержит 26 уравнений и соотношении и такое же количество искомых характеристических функций (см. раздел 2.1). Напротив, в случаях зависимости компонент тензора напряжений от температуры или же при учете теплообмена между частицами сплошной среды и необходимости определения температурного поля в систему исходных уравнений необходимо включать дополнительные соотношения, учитывающие закон теплопроводности Фурье , где ? коэффициент теплопроводности) и взаимосвязь между удельной внутренней энергией и температурой (Е = Е(?,Т)).

В ряде случаев система исходных уравнений может быть и более узкой, нежели представленная выше система (2.2.1)(2.2.7). Например, при постановке задачи механики идеальной жидкости, для которой компоненты тензора напряжений не зависят напрямую от компонент тензора деформаций (зависимость напряжений от деформаций имеет косвенный характер через плотность, взаимосвязанную с объемной деформацией, не требуется включения в систему исходных уравнений кинематических соотношений (2.2.4) и геометрических соотношений (2.2.6). Однако в любом случае следует обеспечивать замкнутость системы исходных уравнений с равенством количества уравнений числу неизвестных характеристических функций, описывающих движение и состояние сплошной среды. Это является необходимым условием для последующего нахождения единственного решения задачи.

2.2.3 Начальные и граничные условия. Неотъемлемым и важнейшим элементом постановки любой задачи механики сплошных сред является формулировка начальных и граничных условий. Их значение определяется тем, что та или иная система разрешающих уравнений описывает целый класс движений соответствующей деформируемой среды, и лишь задание отвечающих исследуемому процессу начальных и граничных условий позволяет выделить из этого класса представляющий интерес частный случай, соответствующий решаемой практической задаче.

Начальные условия это условия, которыми задаются значения искомых характеристических функций в момент начала рассмотрения исследуемого процесса. Количество задаваемых начальных условий определяется количеством основных неизвестных функций, входящих в систему разрешающих уравнений, а также порядком входящей в эту систему высшей производной по времени. Например, адиабатическое движение идеальной жидкости или идеального газа описывается системой шести уравнений с шестью основными неизвестными тремя компонентами вектора скорости,давлением,плотностью и удельной внутренней энергией , при этом порядок производных этих физических величин по времени не превышает первый порядок. Соответственно этому в качестве начальных условий должны быть заданы начальные поля этих шести физических величин: при t =0 ,,,. В некоторых случаях (например, в динамической теории упругости) в качестве основных неизвестных в системе разрешающих уравнений используются не компоненты вектора скорости, а компоненты вектора перемещения, а уравнение движения содержит производные второго порядка компонент перемещения , что требует задания двух начальных условий для искомой функции : при t = 0

 

и .

Более сложным и разнообразным образом при постановке задач механики сплошных сред задаются граничные условия. Граничные условия это условия, которыми задаются значения искомых функций (или их производных по координатам и времени) на поверхности S области, занимаемой деформируемой средой. Различают граничные условия нескольких типов: кинематические, динамические, смешанные и температурные.

Кинематические граничные условия соответствуют случаю, когда на поверхности S тела (или ее части) задаются перемещения или скорости где координаты точек поверхности S, изменяющиеся в общем случае в зависимости от времени.

Динамические граничные условия (или граничные условия в напряжениях) задаются, когда на поверхности S действуют поверхностные силы р. Как следует из теории напряжений, в этом случае на любой элементарной площадке поверхности с единичным вектором нормали п вектор удельных поверхностных сил рп принудительно задает вектор полного напряжения ?п = рn, действующий в сплошной среде в точке на данном участке поверхности, что приводит к взаимосвязи тензора напряжений (?) в этой точке с поверхностной силой и ориентацией вектора п соответствующего участка поверхности: (?) п = рп или .

Смешанн