Термодинамика и термохимия
Контрольная работа - Иностранные языки
Другие контрольные работы по предмету Иностранные языки
?рмы, такие как кинетическая энергии движущегося тела, потенциальная энергия; энергия нагрева, определяемая температурой; электрическая энергия, химическая энергия, и т.д. Химические и физические процессы почти всегда сопровождаются изменениями энергии, и очень важные результаты были получены, при изучении законов, лежащих в основе этих изменений. Изучение именно этих законов преобразования энергии составляет предмет термодинамики. Хотя термодинамика, может показаться, несколько теоретической по своей природе, так как два закона привели к фундаментальным результатам как в химии, так и в физике.
Закон Сохранения Энергии: Первый Закон Термодинамики
Много попыток было сделано, для того чтобы понять "непрерывное движение ", то есть непрерывное “производство” механической работы без подачи эквивалентного количества энергии от другого источника. Неудача всех этих попыток привела к принятию универсального принципа сохранения энергии. Этот принцип был сформулирован во многих формах, но по существу они составляют факт, что, хотя энергия может быть преобразована из одной формы в другую, она не может появиться из ничего или исчезнуть или, альтернативно, всякий раз, когда количество одного вида энергии произведено, точно такое количество других видов должно исчезнуть. Очевидно, что бесконечное движение, как термин в общепринятом смысле, противоречил бы этому принципу, поскольку из этого следует появление энергии из ничего. Значит точная эквивалентность механической или электрической работы и нагрева, как доказано Джоулем и другими, является необходимым следствием того же самого принципа.
Закон сохранения энергии - результат опыта, никакое опровержение этому пока еще не было найдено. Предположение, что он имеет универсальную применимость основание для первого закона термодинамики. Этот закон может быть выведен одним из способов, данных выше для принципа сохранения энергии, или он может выглядеть следующим образом. Полная энергия системы и окружающей ее среды должна остаться постоянной, хотя она может переходить из одной формы, в другую.
Изменение теплоты при Химических Реакциях
Предмет термохимия имеет дело с изменениями степени нагрева тела, сопровождающими химическими реакциями. Как было замечено, законы термохимии основаны в значительной степени на принципе сохранения энергии или первом законе термодинамики. Различные вещества имеют различную внутреннюю (химическую) энергию, так что полная энергия продуктов реакции в общем отличается от энергии реагирующих веществ; следовательно, химическая реакция будет сопровождаться выделением или поглощением энергии, которая может проявляться в форме нагрева. Если тепло выделяется в процессе реакции, процесс называют - экзотермическим, и если тепло поглощается, то эндотермическим. Большинство, хотя не все, химические реакции, которые происходят при обычных температурах - экзотермические по характеру, так как они сопровождаются выделением тепла. Если химическая реакция связана с изменением объема, что особенно свойственно многим процессам в смеси газов, величина изменения энергии будет зависеть от того, проведена ли реакция при постоянном давлении или при постоянном объеме. Так как большинство реакций обычно происходят при постоянном (атмосферном) давлении легко фиксировать изменения энергии, определяя значение qp тепло, поглощенное при постоянном давлении; оно может, конечно, быть определено с ?H увеличение количества теплоты удовлетворяющее тем же самым условиям. Она часто упоминается как теплота выделившаяся при реакции; она представляет собой изменение степени нагрева продуктов реакции и реагентов, при постоянном давлении и при определенной температуре, с каждым веществом в определенном физическом состоянии. Значение qp (или ?H) значение gv (или ?E) могут быть с точностью определены, если изменение объема ?V при постоянном давлении P известно, как будет замечено ниже.
Изменение теплоты, сопровождающее реакцию, например, между твердым углеродом (графитом) и газообразным кислородом, получается углекислый газ, что представлено в форме термохимического уравнения, следующим образом:
C (s) + 02 (g) = C02 (g)?
H = -94.00 ккал.
Это означает, что, когда 12.01 грамм твердого углеродистого (графита) и 32 грамма газообразного кислорода реагируют полностью, для получения 44.01 грамма газообразного диоксида углерода, при постоянном давлении, характерно уменьшение теплоты, так как ?H отрицательна в 94 килокалории., т.е. 94,000 калории. Общая практика в современной термохимии заключается в том, чтобы выражать результаты в килокалориях, потому что определение изменения теплоты в калориях подразумевает, что экспериментально достижимая точность большее чем обычно. Нужно отметить, кстати, что значение ?H (или ?E) всегда относится к законченным реакциям.
Символы g, l, и s, помещенные в круглые скобки после формулы указывают, является ли вещество, принимающее участие в реакции газообразным, жидким или твердым. Реакции, имеющие место в водном решении обозначены символом aq; таким образом,
HCl (aq) + NaOH (aq) = NaCl (aq) + H2O)
?H = 13.70 ккал.
Строго говоря использование aq подразумевает, что реакция встречается в таком растворенном состоянии, что дальнейшей добавление воды не вызывает никакое обнаружимое изменение теплоты.
Отрицательное значение ?H, как в этих двух случаях, указанных выше, означает, что реакция сопровождается уменьшением количества теплоты; то есть теплота ?/p>