Теоретическая механика. Статика

Методическое пособие - Физика

Другие методички по предмету Физика

nbsp;

 

Проверка. Для проверки составим уравнение равновесия в форме суммы моментов сил относительно точки D (рис. 3) и убедимся, что оно обращается в тождество:

 

 

Действительно, при подстановке найденных значений получаем

 

 

Ответ. Реакции равны Ra = 1.5 кН, Rв = 2.1 кН.

 

Компьютерное решение. Для решения системы линейных уравнений можно использовать итерационные методы.

Решаем задачу в в среде Mathcad итерационным методом:

 

 

Пример СП-4. Равновесие системы тел в плоскости (Мещерский, 4.43)

 

Подвеска состоит из двух балок АВ и СD, соединённых шарнирно в т.D и прикреплённых к потолку шарнирами А и С. Вес балки АВ равен 60 Н и приложен в т.Е. Вес балки CD равен 50 Н и приложен в т.F. В точке В балки АВ приложена вертикальная сила Р = 200 Н. Определить реакции в шарнирах А и С, если заданы следующие размеры: АВ = 1 м, СD =0.8 м,

АЕ = 0.4 м, СF = 0.4 м, углы наклона балок АВ и СD к горизонту соответственно равны: ? = 60 0 и ? = 450 .

Ответ: -Xa = Xc = 135 Н, Ya = 150 H, Yc = 160 H.

 

К задаче 4.43

 

Решение:

 

Рассмотрим равновесие кронштейна и составим расчетную схему сил, действующих на него (рис.4). Приложим вес стержня АВ G1 в т. Е, а вес стержня CD G2 в т. F. В точках А и С шарнирно неподвижные опоры заменяются реакциями Xa, Xc, Ya и Yc.

Если рассматривать кронштейн целиком, то получается 4 неизвестных, а уравнений равновесия для плоской системы произвольных сил можно составить только 3, поэтому составляем две расчетные схемы для каждого стержня отдельно (рис.5), при этом появляются ещё 2 неизвестные реакции в шарнире D.

Для каждой расчетной схемы (рис.5) составляем 3 уравнения равновесия: два уравнения сил в проекциях на оси координат x и y, а также сумму моментов сил относительно т. D.

 

 

В результате получим систему 6 уравнений с шестью неизвестными.

 

Из уравнения (2)

 

.

 

Подставляем в уравнение (5) и выражаем:

 

 

Из уравнений (1) и (4) находим .

Из уравнения (6) выражаем Xa, из (3) Xc, и приравниваем эти выражения:

 

Подставим Ya и преобразуем выражение:

 

 

выразим и найдём Yc:

 

 

Для нахождения AD воспользуемся теоремой синусов:

 

 

При подстановке числовых значений получим Yc=160 (H); Ya=150 (H); Xc=Xa=135 (H)

Проверка. Для проверки лучше всего использовать расчетную схему всего кронштейна (рис.4) - данная расчетная схема не содержит реакций в шарнире D. Составим уравнение равновесия в форме суммы моментов сил относительно любой точки (например, относительно точки D) (рис. 4) и убедимся, что оно обращается в тождество:

 

Действительно, при подстановке найденных значений получаем тождество.

Ответ: Реакции Yc=160 (H); Ya=150 (H); Xc=Xa=135 (H).

 

Вычисления на компьютере:

 

Компьютерное решение.

Решаем этуже задачу в в среде Mathcad итерационным методом:

 

 

 

Пример СП-5. Равновесие пространственной системы сил (Мещерский, 8.24)

 

Однородная прямоугольная рама веса 200 Н прикреплена к стене при помощи шарового шарнира А и петли В и удерживается в горизонтальном положении веревкой СЕ, привязанной в точке С рамы и к гвоздю Е вбитому в стену на одной вертикали с А, причем . Определите натяжение верёвки и опорные реакции.

 

 

 

 

 

 

 

 

 

К задаче 8.24.

 

 

 

 

 

 

 

 

 

 

 

Решение.

Рассмотрим равновесие рамы АВCD и составим расчетную схему сил, действующих на нее (рис. 6).

Как активная сила, действует сила тяжести рамы АВCD , приложенная в центре плиты.

Со стороны связей на стержень действуют их реакции , и натяжение части веревки ЕС.

Для полученной в расчетной схеме плоской системы сходящихся сил составляем три уравнения равновесия в проекциях на оси координат x, y и z и сумму моментов сил относительно координатных осей x, y и z. () (рис. 6):

 

Из уравнения (5) находим . Из уравнение (6) . Из уравнение (4) . Из уравнение (3) находим . Из уравнение (2) . Из уравнение (1)

При заданных числовых значениях получаем T= 200 H, XA= 86,6 H, YA= 150 H, ZA = 100 H, XB = ZB = 0.

Проверка. Для проверки составим еще три уравнения равновесия в форме проекций сил на оси x1, y, z1 (рис. 6) и убедимся, что оно обращается в тождество:

 

 

Действительно, при подстановке найденных значений получаем

 

 

Ответ. Сила натяжения равна Т = 200 Н, опорные реакции XA = 86.6 Н, YA = 150 Н, ZA = 100 Н, XB = YB = 0.

Компьютерное решение. Для решения системы линейных уравнений можно использовать, например, матричный метод. Уравнения равновесия (1), (2) и (3) запишем в стандартной форме, сохраняя неизвестные в левых частях уравнений:

 

Матричное решение имеет вид:

 

 

В среде Mathcad можно выполнить и проверку.