Структура и функции белков
Контрольная работа - Биология
Другие контрольные работы по предмету Биология
Содержание
1. Дайте характеристику физических методов исследования строения белков. Приведите примеры
. Напишите химическую формулу пептида серил-лейцил-треонил-пролина
. Приведите примеры зависимости биологической активности белков от их первичной структуры
. Напишите химические формулы уридиловой и псевдоуридиловой кислот. Укажите, в состав каких нуклеиновых кислот они входят. Объясните роль псевдоуридиловой кислоты как структурного мономера
. Напишите уравнения реакций, в которых участвуют качестве коферментов тиаминый рофосфат, липоат, пиридоксальфосфат
. Напишите начальный этап ферментативного фосфоролиза аланиновой т-РНК, выделенной из пекарских дрожжей. Назовите фермент, катализирующий процесс фосфоролиза и образовавшиеся продукты реакции
. Составьте уравнение реакции переаминирования гистидина и глиоксиловой кислоты. Покажите на данных примерах механизм действия пиридоксальфермента
. Используя схему превращений метаболитов в цикле три-и дикарбоновых кислот, найдите этапы дегидрирования метаболитов. Напишите химические уравнения реакций и, учитывая особенности передачи энергии на синтез АТФ через систему дыхательных ферментов подсчитайте число синтезированных молекул АТФ за один цикл превращения
. В биосинтезе пальмитиновой кислоты одной из промежуточных стадий является превращение: капронил-S-КОА=каприл-S-КОА. Напишите уравнение реакции и укажите ферменты ускоряющие эти процессы
. Охарактеризуйте окислительное фосфорилирование на примере окислительного декарбоксилирования пировиноградной кислоты. Чем отличается окислительное фосфорилирование от фотосинтетического?
. Приведите примеры биологически активных производных гормона адреналина. Напишите уравнение реакции их биосинтеза, покажите их физиологическое действие
. Опишите уровни регуляции биосинтеза белка
Используемая литература
белок кислота гормон биосинтез
1. Дайте характеристику физических методов исследования строения белков. Приведите примеры
Классификация методов не может быть абсолютно строгой, поскольку не всегда удается выделить специфические свойства, определяемые данным методом. Но в целом возможно оценить наиболее важные характеристики методов исследования.
Спектроскопические методы
В большинстве этих методов измеряют зависимость интенсивности излучения I, прошедшего через вещество или рассеянное веществом, от частоты n, то есть определяют функцию I(n). В настоящее время диапазон частот распространяется на значения от минимальных n ї 106 Гц в ядерном магнитном резонансе (ЯМР) до 1019 Гц (гамма-излучение). Частоты n и длины волн l излучения связаны простым соотношением с = ln, с - скорость света в вакууме. Для указанного диапазона частот длины волн изменяются от l - 200 м до 10 - 14 м. Столь значительный диапазон частот (длин волн) требует различных источников излучения и выявляет различные физические свойства вещества. Наблюдаемые частоты соответствуют разностям энергий Е двух состояний молекул:
, 2 = (E2 - E1)/ h,
где h - постоянная Планка. Переходами между уровнями энергии E1 и E2 управляют правила отбора. Это означает, что не все переходы возможны. Из таблицы видно, что разница, например, между двумя уровнями энергии валентных электронов (УФ-спектры - ультрафиолетовые спектры) DЕ (УФ) = E2 - E1 значительно больше, чем DЕ (ЯМР).
Для химии важны не только абсолютные разницы DЕ, но их изменения в различных соединениях, вызванных изменениями в составе или под влиянием ближайшего окружения.
Наибольшее распространение для идентификации веществ получили колебательные и электронные спектры, а также спектры ядерного магнитного резонанса.
В колебательной спектроскопии важно иметь полный интервал частот от очень низких (порядка 10 см - 1), характерных для крутильных колебаний, до высоких значений (порядка 5000 см - 1). Частоты колебательных спектров используются также для расчета силовых полей молекул, то есть для определения различного типа сил взаимодействия атомов в молекуле. Так называемые силовые постоянные для значительного числа групп атомов обладают свойством переносимости, то есть постоянством в рядах сходных по строению молекул.
Электронная спектроскопия является очень чувствительным и удобным методом для определения спектров поглощения, пропускания и отражения, изучения кинетики реакции, сопровождающихся спектральными изменениями. В обычных условиях спектры имеют диффузный характер, что ограничивает их применение веществами, имеющими хромофорные группы (ароматические циклы, кратные связи и т.п.). Эти спектры позволяют устанавливать наличие тех или иных групп в молекуле, то есть осуществлять групповой анализ, изучать влияние заместителей на электронные спектры и строение молекул, исследовать таутомерию и другие превращения.
Метод ядерного магнитного резонанса (ЯМР) основан на взаимодействии внешнего магнитного поля с ядрами, имеющими магнитный момент, такими как 1H, 13C, 15N, 19F, 29Si, 31P, для которых спиновое квантовое число равно 1/2, а также для ряда ядер со спиновым квантовым числом, большим 1/2. Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества, например тетраметилсилана, позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей опр?/p>