Структура аргументации: тезис, аргумент, демонстрация.

Контрольная работа - Разное

Другие контрольные работы по предмету Разное

?венно выводится из аргументов в качестве заключения ( если речь идет об обосновании его истинности) или устанавливается его несовместимость с аргументами ( при обосновании его ложности).

Косвенная аргументация.

Аргументация называется косвенной, если аргументы направлены не на тезис, а на опровержение или подтверждение другого суждения или нескольких суждений, альтернативных тезису.

Опосредствующие суждения могут быть допущения, имеющие вид антитезиса. Тогда косвенная аргументация называется аргументацией от противного. Антитезис - это суждение, противоречащее тезису, т.е. суждение истинность которого необходимо влечет ложность тезиса, тогда как ложность его достоверно свидетельствует об истинности тезиса.

Если речь идет о доказательстве тезиса, то должна быть продемонстрирована ложность антитезиса. Аргументы и демонстрация в этом случае направлены на то, чтобы показать, что антитезис ложен. После обоснования ложности антитезиса делается последний шаг демонстрации: поскольку антитезис ложен, значит тезис истинен. Поскольку аргументы истинные суждения, значит, обнаружить ложность антитезиса можно лишь показав его несовместимость с аргументами. Эта несовместимость может проявляться в прямом противоречии одного или нескольких аргументов антитезису или его следствиям.

В других случаях несовместимость антитезиса и аргументов проявляется в том, что аргументы с антитезисом приводят к двум противоречащим друг другу высказываниям ( в этом случае косвенное доказательство называется апагогическим, или доказательством путем сведения к абсурду).

Пример апагогического доказательства доказательство правильности умозаключения сокращенным табличным способом тезис этого доказательства суждение: данное умозаключение правильно, т.е. между его посылками и заключением существует отношение логического следования. Антитезис предположение, что умозаключение неправильно т.е. что посылки могут быть истинными, а заключение ложным. Затем из этого допущения выводят следствия относительно истинностных значений подформул. Аргументы доказательства табличные определения логических связок. Получив противоречащие друг другу следствия, что одна и та же подформула должна быть и истинной и ложной, заключают, что антитезис ложен, и тогда тезис истинен.

Другой вид косвенных аргументаций разделительные.

Пример разделительной аргументации доказательство методом аналитических таблиц утверждения, что некоторая формула логики высказываний собственно выполнима. Известно, что каждая формула тождественно истинна, собственно выполнима или тождественно ложно. Методом аналитических таблиц прямо невозможно доказать, что формула собственно выполнима, но можно установить тождественную истинность и тождественную ложность формулы. Если доказано, что она не тождественно истинна и не тождественно ложна, то тем самым доказано, что она собственно выполнима.

Доказательство от противного тоже можно рассматривать как разделительные с двумя членами строгой дизъюнкции (логический эквивалент союза или; операция формализующая основные логические свойства этого союза): тезис и антитезис не могут быть ни вместе истинными, ни вместе ложными. Но все же доказательства от противного имеют специфику. В них до начала доказательства одно суждение объявлено тезисом, другое условным допущением, антитезисом, и все операции с антитезисом направлены на то, что бы обосновать истинность тезиса. В разделительных же доказательствах часто изначально неизвестно, какое из альтернативных суждений подтвердится, поэтому назвать одно из них тезисом до окончания процесса доказательства во многих случаях нельзя. Все альтернативные суждения с начала выступают как равноправные, хотя, возможно, доказывающий и отдает предпочтение одному из них. Лишь последовательные опровержения всех альтернатив, кроме одной, выявляют истинную, которая впоследствии объявляется тезисом этого доказательства. Разделительное доказательство часто выступает, прежде всего, как способ нахождения истины, а уж потом как способ ее демонстрации.

 

Опровержение и критика как виды аргументативных процессов

Опровержение и критика также бывают прямыми и косвенными, однако в этих аргументативных процессах есть своя специфика. Опровергнуть какое либо высказывание легче, чем доказать. Достаточно вывести из тезиса следствие, противоречащее хотя бы одному аргументу, или из тезиса и аргументов два противоречащих друг другу высказывания, как тезис опровергнут. И в том, и в другом случае опровержение прямое, без привлечения опосредующих суждений. Косвенное же опровержение предполагает обоснование истинности антитезиса (противоречащего тезису суждения) или истинности противоположного ему суждения. Из-за того, что истинность обосновать сложнее, чем ложность, косвенное опровержение встречаются гораздо реже, чем прямые.

Прямое опровержение осуществляется теми же двумя способами, что и доказательство от противного.

  1. Из тезиса и аргументов нужно вывести противоречащие друг другу следствия. Это будет свидетельством несовместимости тезиса с аргументами, из чего следует, что при истинности аргументов тезис ложен. Это опровержение способом сведения к абсурду.
  2. Из тезиса выводят следствия, затем находят аргумент, противоречащий одному из этих следствий, что свидетельствует о сложности данного следствия и, значит, о ложности тезиса.