Строительные материалы, их свойства и изменения при пожаре
Контрольная работа - Строительство
Другие контрольные работы по предмету Строительство
?дразделяются на четыре группы:
РП1 (нераспространяющие);
РП2 (слабораспространяющие);
РП3 (умереннораспространяющие);
РП4 (сильнораспространяющие).
Дымовыделение - способность материала выделять дым при горении, характеризуется коэффициентом дымообразования.
Коэффициент дымообразования - величина, характеризующая оптическую плотность дыма, образующегося при сгорании образца материала в экспериментальной установке. Горючие строительные материалы по дымообразующей способности подразделяются на три группы:
Д1 (с малой дымообразующей способностью);
Д2 (с умеренной дымообразующей способностью);
ДЗ (с высокой дымообразующей способностью).
Показатель токсичности продуктов горения материалов - отношение количества материала к единице объема камеры экспериментальной установки, при сгорании которого выделяющиеся продукты вызывают гибель 50% подопытных животных. Горючие строительные материалы по токсичности продуктов горения подразделяются на четыре группы:
Т1 (малоопасные);
Т2 (умеренноопасные);
ТЗ (высокоопасные);
Т4 (чрезвычайно опасные).
Металлы, их поведение в условиях пожара и способы повышения стойкости к его воздействию
Металлы:
Черные (чугун, сталь);
Цветные (алюминий, бронза).
Стали
Алюминиевые сплавы
Поведение металлов в условиях пожара
При нагреве металла подвижность атомов повышается, увеличиваются расстояния между атомами и связи между ними ослабевают. Термическое расширение нагреваемых тел - признак увеличения межатомных расстояний. Большое влияние на ухудшение механических свойств металла оказывают дефекты, число которых возрастает с увеличением температуры. При температуре плавления количество дефектов, увеличение межатомных расстояний и ослабление связей достигает такой степени, что первоначальная кристаллическая решетка разрушается. Металл переходит в жидкое состояние.
В интервале температур от абсолютного нуля до точки плавления изменения объема всех типичных металлов приблизительно одинаково - 6-7,5%. Судя по этому, можно считать, что увеличение подвижности атомов и расстояний между ними, а соответственно, и ослабление межатомных связей, свойственно всем металлам почти в одинаковой степени, если они нагреты до одной и той же гомологической температуры. Гомологическая температура - это относительная температура, выражается в долях температуры плавления (Тпл) по абсолютной шкале Кельвина. Так, например, железо и алюминий при 0,3Тпл обладают одинаковой прочностью межатомных связей, а следовательно, и одинаковой механической прочностью. По стоградусной шкале это будет: для железа 331 оС, для алюминия 38 оС, т.е. ?в железа при 331 оС равно ?в алюминия при 38 оС.
Повышение температуры приводит к уменьшению прочности, упругости и увеличению пластичности металлов. Чем ниже температура плавления металла или сплава, тем при более низких температурах происходит снижение прочности, например у алюминиевых сплавов - при более низких температурах, чем у сталей.
При высоких температурах также происходит увеличение деформаций ползучести, которые являются следствием увеличения пластичности металлов.
Чем выше величина нагружения образцов, тем при более низких температурах начинается развитие деформации ползучести и происходит разрыв образца, причем при меньших величинах относительной деформации.
При повышении температуры изменяются и теплофизические свойства металлов и сплавов. Характер этих сложный и трудно поддается объяснению.
Наряду с общими закономерностями, характерными для поведения металлов при нагреве, поведение сталей в условиях пожара имеет особенности, которые зависят от ряда факторов. Так, на характер поведения оказывает влияние прежде всего химический состав стали: углеродистая или низколегированная, затем способ изготовления или упрочнение арматурных профилей: горячая прокатка, термическое упрочнение, холодная протяжка и т.п. При нагревании образцов горячекатанной арматуры из углеродистой стали происходит уменьшение ее прочности и увеличение пластичности, что приводит к снижению пределов прочности, текучести, возрастанию относительного удлинения и сужения. При остывании такой стали ее первоначальные свойства восстанавливаются.
Несколько иной характер поведения при нагревании низколегированных сталей. При нагревании до 300 оС происходит некоторое увеличение прочности ряда низколегированных сталей (25Г2с, 30ХГ2С и др.), которая сохраняется и после остывания. Следовательно, низколегированные стали при невысоких температурах даже повышают прочность и менее интенсивно теряют ее с увеличением температуры благодаря легирующим добавкам. Особенности поведения термически упрочненной арматуры в условиях пожара является необратимая потеря упрочнения, которая вызывается отпуском стали. При нагревании до 400 оС может происходить некоторое улучшение механических свойств термически упрочненной стали, выражаемое в повышении условного предела текучести при сохранении предела прочности. При температуре выше 400 оС происходит необратимое снижение как предела текучести, так и предела прочности (временного сопротивления).
Арматурная проволока, упрочненная наклепом, при нагреве также необратимо теряет упрочнение. Чем выше степень упрочнения (наклепа), ?/p>