Строение металлов

Контрольная работа - Разное

Другие контрольные работы по предмету Разное

?, расположенных параллельно, воспроизводит пространственную кристаллическую решетку, узлы которой являются местом расположения атомов (ионов). Расстояния между центрами соседних атомов измеряются ангстремами (1 А= 1 10-8 см) или в килоисках - kX (1kX = 1,00202 А). Взаимное расположение атомов в пространстве и величину между атомных расстояний определяют рентгеноструктурным анализом. Расположение атомов в кристалле весьма удобно изображать в виде пространственных схем, в виде так называемых элементарных кристаллических ячеек. Под элементарной кристаллической ячейкой подразумевается наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решетку. Простейшим типом кристаллической ячейки является кубическая решетка. В простой кубической решетке атомы расположены (упакованы) недостаточно плотно. Стремление атомов металла занять места, наиболее близкие друг к другу, приводит к образованию решеток других типов: кубической объемноцентрированной (рисунок 3, а), кубической гранецентрированной (рисунок 3, б) и гексагональной плотноупакованной (рисунок 3, в).

 

Рисунок 3. Элементарные кристаллические ячейки: а - кубическая объемноцентрированная; б - кубическая гранецентрированная; в - гексагональная плотноупакованная.

металл теплопроводность электромагнитный температурный

Кружки, отображающие атомы, располагаются в центре куба и по его вершинам (куб объемноцентрированный), или в центрах граней и по вершинам куба (куб гранецентрированный), или в виде шестигранника, внутрь которого наполовину вставлен также шестигранник, три атома верхней плоскости которого находятся внутри шестигранной призмы (гексагональная решетка).

Метод изображения кристаллической решетки, приведенный на рисунке 3, является условным (как в любой другой). Может быть, более правильно изображение атомов в кристаллической решетке в виде соприкасающихся шаров (левые схемы на рисунке 3). Однако такое изображение кристаллической решетки не всегда удобно, чем принятое (правые схемы на рисунке 3).

Размеры кристаллической решетки характеризуются параметрами, или периодами решетки. Кубическую решетку определяет один параметр - длина ребра куба а (рисунок 3, а, б). Параметры имеют величины порядка атомных размеров и измеряются в ангстремах.

Так например, параметр решетки хрома, имеющего структуру объемноцентрированного куба, равен 2,878 А, а параметр решетки алюминия, имеющего структуру гранецентрированного куба, 4,041 А.

Параметр решетки - чрезвычайно важная характеристика. Современные методы рентгеновского исследования позволяют измерить параметр с точностью до четвертого или даже пятого знака после запятой, т. е. одной десятитысячной - одной стотысячной доли ангстрема.

Из рассмотрения схем кристаллических решеток (рисунок 3), если считать, что атомы являются как бы упругими, касающимися друг друга шарами, вытекает, что параметр решетки а и атомный диаметр d связаны простыми геометрическими соотношениями.

Для объемноцентрированного куба

= а v3 / 2.

 

Для гранецентрированного куба

= а v2 / 3.

 

Принимая для атома форму шара, можно подсчитать, что в кубической объемноцентрированной решетке атомы занимают 68% объема, а в кубической гранецентрированной (как и в гексагональной плотноупакованной) 74%, т.е. во втором случае атомы располагаются более плотно, более компактно.

Для металлов распространена гексагональная решетка (рисунок 3, в).

Если слои атомов касаются друг друга, т. е. три атома, изображенные внутри решетки (рисунок 3, в), касаются атомов, расположенных на верхней и нижней плоскостях, то имеем так называемую гексагональную плотноупакованную решетку.

Размеры гексагональной плотноупакованной решетки характеризуются постоянным значением с/а=1,633. При иных значениях с/а получается неплотлоупакованная гексагональная решетка.

Кубическая гранецентрированная и гексагональная решетки представляют самый плотный способ укладки шаров одного диаметра.

Некоторые металлы имеют тетрагональную решетку (рисунок 4); она характеризуется тем, что ребро с не равно ребру а. Отношение этих параметров характеризует так называемую степень тетрагональности. При с/а = 1 получается кубическая решетка. В зависимости от пространственного расположения атомов тетрагональная решетка (как и кубическая) может быть простой, объемноцентрированной и гранецентрированной.

 

Рисунок 4. Тетрагональная решетка

 

Существенное значение для свойств данного металла или сплава имеет число атомов, находящихся во взаимном контакте. Это определяется числом атомов, равноотстоящих на ближайшем расстоянии от любого атома.

Число атомов, находящихся на наиболее близком и равном расстоянии от данного атома, называется координационным числом. Так, например, атом в простой кубической решетке имеет шесть ближайших равноотстоящих соседей, т. е. координационное число этой решетки равно 6.

Центральный атом в объемноцентрированной решетке имеет восемь ближайших равноотстоящих соседей, т. е. координационное число этой решетки равно 8. Координационное число для гранецентрированной решетки равно 12. В случае гексагональной плотноупакованной решетки координационное число равно 12, а в случае с/а ? 1,633 каждый атом имеет шесть атомов на одном расстоянии и шесть на другом (координационное число 6).

Для краткого обозначения кристаллической решетки с указан