Строение и функции головного мозга

Информация - Биология

Другие материалы по предмету Биология

упают главным образом не из периферических отделов сенсорных систем, а от специфических и других ядер таламуса и метаталамуса, хотя при этом сохраняется топическое распределение информации. Возбуждение от ассоциативных ядер направляется к ассоциативным областям, а также частично и к вторичным проекционным областям коры. Большинство нейронов ассоциативных ядер таламуса и метаталамуса являются мультиполярными, способными выполнять полисенсориые функции. На таких полисенсорных нейронах происходит конвергенция (схождение) возбуждений разных модальностей и формируется интегрированный сигнал, который затем передается в ассоциативную кору большого мозга. Неспецифические сенсорные ядра таламуса морфологически отличаются от других ядер промежуточного мозга тем, что они имеют преимущественно ретикулярное строение, т. е. состоят в основном из густой сети нейронов с длинными слабо ветвящимися дендритами. Возбуждение неспецифических ядер вызывает генерацию в коре характерной веретенообразной электрической активности. В целом нейроны неспецифических ядер не приводят к возникновению возбуждения сенсорных нейронов коры большого мозга, а изменяют их чувствительность к специфической афферентации. Неспецифические ядра таламуса оказывают на кору головного мозга модулирующее влияние, регулируют ее функциональное состояние, причем преимущественно тех областей коры, которые в данный момент участвуют в обработке поступающей сенсорной информации. Вот почему деятельность неспецифических ядер таламуса тесно связана с регуляцией ритма сон - бодрствование, а также с формированием интегративных процессов мозга, обеспечивающих условнорефлекторную деятельность и различные компоненты психической деятельности.

В нейронных сетях всех видов сенсорных ядер промежуточного мозга происходят сложные интегративные процессы, связанные с переработкой сенсорной информации. Одним из механизмов такой интеграции являются тормозные процессы, которые проявляются в наличии длительных тормозных постсинаптических потенциалов в нейронных структурах таламуса.

К числу надсегментарных функций таламуса относится анализ болевой чувствительности и организация болевых реакций. Считается, что таламус является высшим центром болевой чувствительности - импульсы, идущие к нейронам таламуса от поврежденных участков тела и внутренних органов, вызывают активацию таламических нейронов и субъективные болевые ощущения. У таламических животных сильные раздражения сенсорных входов вызывают крик, вегетативные и поведенческие реакции.

Таламус участвует в формировании мотиваций и поведения, направленного на удовлетворение возникающих потребностей, а также в реализации эмоций как результат оценки вероятности достижения полезного результата. Участие таламуса в этих реакциях объясняется, в частности, тем, что он является коллектором почти всех сенсорных потоков, наличие которых является необходимым условием для реализации указанных функций. В таламусе происходит взаимодействие огромного потока сенсорной информации, из которого наиболее важная информация направляется не только к коре большого мозга, но и к базальным ганглиям, гипоталамусу, гиппокампу, ядрам миндалевидного комплекса. Внутриталамические связи обеспечивают интеграцию сложных двигательных реакций с вегетативными процессами, регулируемыми структурами лимбической системы.

Гипоталамус находится в основании головного мозга человека и составляет стенки 3-го мозгового желудочка. Стенки к основанию переходят в воронку, которая заканчивается гипофизом (нижней мозговой железой). Гипоталамус является центральной структурой лимбической системы мозга и выполняет многообразные функции. Часть этих функций относится к гормональным регуляциям, которые осуществляются через гипофиз. Другие функции связаны с регуляцией биологических мотиваций. К ним относят потребление пищи и поддержание массы тела, потребление воды и водно-солевой баланс в организме, регуляцию температуры в зависимости от температуры внешней среды, эмоциональных переживаний, мышечной работы и других факторов, функцию размножения. Она включает у женщин регулирование менструального цикла, вынашивание и рождение ребенка, кормление и многое другое. У мужчин - сперматогенез, половое поведение. Гипоталамус играет также центральную роль в реакции организма на стрессовые воздействия. Несмотря на то что гипоталамус занимает не очень большое место в головном мозге, он имеет в своем составе около четырех десятков ядер. В составе гипоталамуса находятся нейроны, вырабатывающие гормоны или специальные вещества, которые в дальнейшем, действуя на клетки соответствующих эндокринных желез, приводят к выделению или прекращению выделения гормонов (так называемые рилизинг-факторы, от англ. release - выделять). Все эти вещества вырабатываются в нейронах гипоталамуса, затем транспортируются по их аксонам в гипофиз. Ядра гипоталамуса связаны с гипофизом гипоталамо-гипофизарным трактом, который состоит примерно из 200 000 волокон. Свойство нейронов вырабатывать специальные белковые секреты и затем их транспортировать для выброса в кровяное русло называется нейрокринией.

Гипоталамус является частью промежуточного мозга и одновременно эндокринным органом. В определенных его участках осуществляется трансформация нервных импульсов в эндокринный процесс. Крупные нейроны переднего гипоталамуса образуют вазопрессин (супраоптическое яд?/p>