Способы описания знаний

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

 

 

 

 

 

 

 

 

Способы описания знаний

 

Введение

 

При изучении интеллектуальных систем традиционно возникает вопрос - что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ. Можно предложить несколько рабочих определений, в рамках которых это становится очевидным.

Данные - это отдельные факты, характеризующие объекты, процессы и явления предметной области, а также их свойства.

Знания - это закономерности предметной области (принципы, связи, законы), полученные в результате практической деятельности и профессионального опыта, позволяющие специалистам ставить и решать задачи в этой области.

Сегодня знания приобрели чисто декларативную форму, то есть знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.

В Искусственном интеллекте основная цель - научиться хранить знания таким образом, чтобы программы могли обрабатывать их и достигнуть подобия человеческого интеллекта. Исследователи ИИ используют теории представления знаний из когнитологии. Такие методы как фреймы, правила, и семантические сети пришли в ИИ из теорий обработки информации человеком. Так как знание используется для достижения разумного поведения, фундаментальной целью дисциплины представления знаний является поиск таких способов представления, которые делают возможным процесс логического вывода, то есть создание выводов из знаний.

Для решения задач инженерных знаний необходимо преобразовать информацию, полученную от экспертов в виде фактов и правил их использования, в форму, удобную для машинной обработки. Для этого созданы и используются в действующих системах различные модели представления знаний.

Система искусственного интеллекта - это система, оперирующая знаниями о проблемной области. Без базы знаний систем искусственного интеллекта не существует. Для формализации и представления знаний разрабатываются специальные модели представления знаний и языки для описания знаний, выделяются различные типы знаний.

Модели представления знаний являют собой одно из важнейших направлений исследований в области искусственного интеллекта. Почему одно из важнейших? Да потому, что без знаний искусственный интеллект не может существовать в принципе. Действительно, представьте себе человека, который абсолютно ничего не знает. Например, он не знает даже таких элементарных вещей как:

для того, чтобы не умереть от голода, необходимо периодически есть;

необязательно из одного края города в другой идти пешком, если для этих целей можно воспользоваться общественным транспортом.

Таких примеров удастся привести еще много, но уже сейчас можно легко ответить на следующий вопрос: Поведение такого человека может считаться разумным?. Конечно же, нет. Именно поэтому, при создании систем искусственного интеллекта особенное внимание уделяется моделям представления знаний.

На сегодняшний день разработано уже достаточное количество моделей. Каждая из них обладает своими плюсами и минусами, и поэтому для каждой конкретной задачи необходимо выбрать именно свою модель. От этого будет зависит не столько эффективность выполнения поставленной задачи, сколько возможность ее решения вообще.

Отметим, что модели представления знаний относятся к прагматическому направлению исследований в области искусственного интеллекта. Это направление основано на предположении о том, что мыслительная деятельность человека - черный ящик. При таком подходе не ставится вопрос об адекватности используемых в компьютере моделей представления знаний тем моделям, которыми пользуется в аналогичных ситуациях человек, а рассматривается лишь конечный результат решения конкретных задач.

Проблема представления знаний заключается в несоответствии между сведениями о зависимостях данной предметной области, имеющимися у специалиста, методами, используемыми им при решении задач, и возможностями формального (однозначно-ограниченного) представления такой информации в ЭВМ. Часто проблема осложняется трудностями для эксперта по формулированию в явном виде имеющихся у него знаний.

Общая проблема представления знаний включает ряд частных проблем:

представление декларативных знаний как данных, наделенных семантикой (фактов);

представление процедурных знаний как отношений между элементами модели, в том числе в виде процедур и функций;

представление метазнаний - правил обработки фактов, способов организации логического вывода, методов решения задач пользователем, порождения новых знаний и т.д.

знание семантика процедурный обработка

 

1. Понятие знание в ИИ

 

Знания - это совокупность сведений о сущностях (объектах, предметах) реального мира, их свойствах и отношениях между ними в определенной предметной области. Иными словами, знания - это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области. С точки зрения ИИ знания можно определить как формализованную информацию, на которую ссылаются в процессе логического вывода.

В исследованиях по ИИ можно выделить два основных направления: программно-прагматическое (не имеет значения, как устроено мыслящее устройство, главное, чтобы на заданные входные воздействия оно реагировало, как человеческий мозг) и би?/p>