Специфика физики микрообъектов

Информация - Физика

Другие материалы по предмету Физика

заряд электрона, vn скорость электрона на n-й орбите), и, во-вторых, условием квантования момента импульса электрона

mvnrn = nh.

Используя эти соотношения, легко найти rn и vn :

rn = h2n2 / me2, vn = e2 / hn.

Энергия Еn стационарного состояния состоит из кинетического (Тn) и потенциального (Un) слагаемых: Еn = Тn + Un. Полагая, что Тn = mvn2 /2, Un = = - е2 / rn и используя последние формулы, находим

Еn = - me4 / 2h2n2.

Отрицательность энергии означает, что электрон находится в связанном состоянии (за нуль принимается энергия свободного электрона).

Подставив полученный результат в правило частот и сопоставив полученное при этом выражение с формулой ?n = 2?cR( 1/k2 - 1/n2), можно, следуя Бору, найти выражение для постоянной Ридберга:

R = me4 / 4?ch3.

Теория Бора (или, как теперь принято говорить, старая квантовая теория) страдала внутренними противоречиями; так, для определения радиуса орбиты приходилось пользоваться соотношениями совершенно разной природы классической и квантовой. Тем не менее эта теория имела большое значение как первый шаг в создании последовательной квантовой теории. При этом впервые удалось объяснить природу спектральных термов (а следовательно, и комбинационного принципа Ритца) и получить расчетное значение постоянной Ридберга, которая соответствовала своему эмпирическому значению. Успехи теории говорили о плодотворности идеи квантования. Познакомившись с расчетами Бора, Зоммерфельд написал ему письмо, где в частности писал: Благодарю Вас за Вашу чрезвычайно интересную работу. Меня давно занимает проблема выражения постоянной Ридберга при помощи величины Планка. Хотя в данный момент я еще скептически отношусь к моделям атомов в целом, тем не менее вычисление этой постоянной, бесспорно, является настоящим подвигом.

 

 

О квантовании момента импульса. Заметим, что в отличие от энергии момент импульса микрообъекта квантуется всегда. Так, наблюдаемые значения квадрата момента импульса микрообъекта выражаются формулой

M2 = h2l (l + 1),

где l целые числа 0, 1, 2, ... Если речь о моменте импульса электрона в атоме в n-м стационарном состоянии, то число l принимает значения от нуля до n-1.

В литературе принято называть момент импульса микрообъекта для краткости просто моментом.

Проекция момента микрообъекта на некоторое направление (обозначим его как z-направление) принимает значения

Mz = hm,

где m=-l, -l+1, ..., l-1, l. При данном значении числа l число m принимает 2l+1 дискретных значений. Подчеркнем, что различные проекции момента микрообъекта на одно и тоже направление всегда отличаются друг от друга на величины, кратные постоянной Планка.

Выше уже отмечалось, что спин есть своеобразный, внутренний момент микрообъекта, имеющий для данного микрообъекта определенную величину. В отличие от спинового момента, обычный момент принято называть орбитальным. Кинематически спиновой момент аналогичен орбитальному; естественно, что для нахождения возможных проекций спинового момента надо пользоваться формулой типа Mz = hm (как и в случае орбитального момента, проекции спинового момента отличаются друг от друга на величины, кратные постоянной Планка). Если s спин микрообъекта, то проекция спинового момента принимает значение h?, где ? = -s, -s+1, ..., s-1, s. Так, проекция спина электрона принимает значения -h/2 и h/2.

Рассматриваемые здесь числа n, l, m, ?, фиксирующие различные дискретные значения квантующихся динамических переменных (в данном случае энергии и момента), принято называть квантовыми числами. Конкретно: n так называемое главное квантовое число, l орбитальное квантовое число, m магнитное квантовое число, ? спиновое квантовое число. Существуют и другие квантовые числа.

 

Противоречия квантовых переходов. Несмотря на большой успех теории Бора, идея квантования порождала первоначально серьезные сомнения; было подмечено, что эта идея внутренне противоречива. Так, в письме к Бору Резерфорд писал (в 1913 г.): Ваши мысли относительно причин возникновения спектра водорода очень остроумны и представляются хорошо продуманными. Однако сочетание идей Планка со старой механикой создает значительные трудности для понимания того, что же все-таки является основой такого рассмотрения. Я обнаружил серьезное затруднение в связи с Вашей гипотезой, в котором Вы, без сомнения, полностью отдаете себе отчет. Оно состоит в следующем: как может электрон знать, с какой частотой он должен колебаться, переходя из одного стационарного состояние в другое? Мне кажется, что Вы вынуждены предположить, что электрон знает заблаговременно, где он собирается остановится.

Поясним отмеченную Резерфордом трудность. Пусть электрон находится на уровне Е1 (рис.1); чтобы перейти на уровень Е2, электрон должен поглотить квант излучения (т.е. фотон) с определенной энергией, равной Е2-Е1. Поглощение фотона с любой другой энергией не может приводить к указанному переходу и по этой причине оказывается невозможным (для простоты рассматриваем только два уровня). Возникает вопрос: каким же образом электрон производит выбор нужного фотона из падающего потока фотона разной энергии? Ведь, чтобы выбрать нужный фотон, электрон должен уже знать о втором уровне, т.е. должен как бы уже побывать на нем. Однако, чтобы побывать на втором уровне, электрон должен сначала поглотить &#