Сорбция маслопродуктов отходами металлургического производства

Курсовой проект - Химия

Другие курсовые по предмету Химия

нного кванта равна разности энергий молекулы между начальным и конечным состоянием.

Таким образом, избирательность поглощения молекулами электромагнитного излучения обусловлена квантовой природой энергетического состояния молекулы, поэтому характер поглощенного излучения отвечает внутренним возможностям молекулы и может использоваться в целях анализа и в структурной химии как средство информации о строении молекулы.

Аналитическим сигналом в этом методе является величина оптической плотности раствора, которая представляет собой десятичный логарифм отношения интенсивности монохроматического светового потока на входе в кювету с анализируемым раствором к интенсивности потока на выходе из кюветы.

Уравнение связи концентрации определяемого элемента и аналитического сигнала (оптической плотности раствора) носит название основного закона светопоглощения и имеет следующий вид:

 

А= ?* С * l, (1.2)

 

где: А- оптическаяплотность раствора,

С - концентрация определяемого компонента (моль/л), - толщина светопоглощающего слоя раствора, (см),

?- молярный коэффициент светопоглощения раствора.

Величина молярного коэффициента погашения характеризует собой поглощательную способность вещества на данной выбранной длине волны и является мерой чувствительности аналитической реакции или способа. Если измерять оптическую плотность серии однотипных растворов (растворов одного и того же вещества) на постоянной длине волны и при постоянной толщине поглощающего слоя, то

 

? * l = const

 

поэтому уравнение связи принимает вид

А = Н * С, (1.3)

 

т.е. при постоянной длине волны и толщине поглощающего слоя, измеряемый аналитический сигнал (оптическая плотность) является однозначной функцией концентрации. Коэффициент К в данном уравнении характеризует угол наклона графика к оси абсцисс (концентрационная ось), т.е. является коэффициентом, характеризующим точность м чувствительность определения.

Как следует из теоретических основ, определяющих природу абсорбционных спектров, в оптическом диапазоне реализуются энергетические переходы, отвечающие переходам ковалентных связей из основного состояния в возбужденное. В этой связи абсорбционная спектроскопия дает возможность непосредственно получить спектр любого растворенного в воде органического соединения, или, если это соединение не растворяется в воде, а находится в ней в эмульгированном или суспензированном состояниях, извлечь его в органический слой и записать спектр поглощения уже не в воде, а в выбранном органическом растворителе.

Сопоставляя спектр эталонного раствора определяемого соединения со спектром, полученным в аналогичных условиях от анализируемой пробы, можно провести количественный анализ органических соединений или металлов. Последние перед определением с помощью органических аналитических реагентов предварительно переводят в растворимое в воде или органических растворителях комплексное соединении.

В зависимости от способа монохроматизации света и регистрации аналитического сигнала, методы абсорбционное спектроскопии принято делить на три группы: колориметрия - метод, основанный на визуальном сопоставлении интенсивности окраски эталонного и анализируемого растворов ( достаточно широко применяется в экспрессных методах анализа, не требующих большое точности . Колориметрические методы удобны для работы в полевых лабораториях, в совхозных агрономических службах и т.п.) фотометрия - метод основанным на селекции облучающего излучения с использованием светофильтров различных типов. Регистрация осуществляется с помощью фотоэлементов. Приборы, используемые в данном случае носят название фотоэлектроколориметров (ФЭК).

Они положительно зарекомендовали себя в практике лабораторий самого различного профиля. И, наконец, самый совершенный вариант - спектрофотомерия - метод основанный на использовании монохроматора в качестве селектора частоты с оценкой интенсивностей световых потоков с помощью фотоэлемента.

Возможности спектрофотомерии подробно изложены в ряде пособий, монографий, статей. В качестве примера можно рекомендовать рассмотрение метода определения фосфорсодержащих соединений в технологических растворах и промышленных стоках.

Атомно-абсорбционая спектроскопия (ААС) - метод количественного анализа, основанный на свойствах атомов поглощать свет с определенной длиной волны (резонансное поглощение). Интервал длин волн спектральной линии, испускаемой источником света, и линии поглощения того же самого элемента в пламени очень узок, поэтому мешающее поглощение других элементов практически не сказывается на результатах анализа.

Впервые атомная абсорбция использована в 1955 году. В настоящее время это один из ведущих методов аналитического контроля, с помощью которого быстро и с большой точностью определяют более 60 элементов.

Существенным отличием атомной абсорбции от пламенноэмиссионной спектрометрии является то, что в последнем методе измеряется излучение, испускаемое атомами в возбужденном состоянии в пламени, а атомная абсорбция основана на измерении излучения, поглощенного нейтральными, невозбужденными атомами, находящимися в пламени, которых в пламени во много раз больше, чем возбужденных.

Этим объясняется высокая чувствительность метода при определении элементов, имеющих высокую энергию возбуждения, т. е. трудно возбуждающихс